Effect of the internal pressure on oscillations of a cylindrical gas bubble

Authors

  • Алексей Анатольевич Алабужев (Alexey A. Alabuzhev) Institute of continuous media mechanics UB RAS; Perm State University

DOI:

https://doi.org/10.17072/1994-3598-2020-4-51-62

Keywords:

gas bubble, forced oscillations, contact line dynamics

Abstract

Natural and forced oscillations of a gas bubble are studied. The bubble has the shape of a round cylinder in the state of equilibrium. It is bounded in the axial direction by two parallel solid surfaces and is surrounded by an incompressible liquid of a finite volume with a free outer surface. The entire system is under an alternating pressure field. The velocity of the contact line of three media (gas-liquid-solid substrate) is proportional to the deviation of the contact angle from the equilibrium value. The frequency of eigenmodes of a gas bubble can increase with an increase in the Hocking parameter, in contrast to the frequencies of an incompressible liquid drop, which only decrease. It is shown that radial oscillations of a cylindrical bubble are possible only in a finite volume of liquid. The effect of crossing the modes of natural oscillations is considered for the dissipative case. The amplitude-frequency characteristics are constructed for different values of the internal gas pressure. Resonance phenomena are found. It is shown that the external influence excites, first of all, volumetric oscillations of the bubble. Variations in shape are caused by the movement of the contact line. Expressions are found for the vibration amplitude in the case of a fixed contact line and a fixed contact angle.

References

Shklyaev S., Straube A. V. Linear oscillations of a hemispherical bubble on a solid substrate. Physics of Fluids, 2008, vol. 20, 052102. DOI: 10.1063/1.2918728

Alabuzhev A. A. Behavior of a cylindrical bubble under vibrations. Computational Mechanics of Continuous Media, 2014, vol.7, no. 2, pp. 151–161. (In Russian). DOI: 10.7242/1999-6691/2014.7.2.16

Hocking L. M. The damping of capillary-gravity waves at a rigid boundary. Journal of Fluid Mechanics, 1987, vol. 179, pp. 253–266. DOI: 10.1017/S0022112087001514

Fayzrakhmanova I. S., Straube A. V., Shklyaev S. Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis. Physics of Fluids, 2011, vol. 23, 102105. DOI: 10.1063/1.3650280

Alabuzhev A. A., Kaysina M. I. Translational mode of eigen oscillations of a cylindrical bubble. Bulletin of Perm University. Series: Physics, 2015, no. 1(29), pp. 35–41. (In Russian).

Alabuzhev A. A., Kaysina M. I. Influence of contact line motion on axisymmetric vibrations of a cylindrical bubble. Bulletin of Perm University. Series: Physics, 2015, no. 2(30), pp. 56–68. (In Rus-sian).

Alabuzhev A. A., Kaysina M. I. Eigen azimuthal oscillations of a cylindrical bubble in final volume vessel. Bulletin of Perm University. Series: Physics, 2015, no. 3(31), pp. 38–47. (In Russian).

Kaysina M. I. Azimuthal modes of eigen oscillations of a cylindrical bubble. Bulletin of Perm University. Mathematics. Mechanics. Computer Science, 2015, no. 2(29), pp. 37–45. (In Russian).

Kaysina M. I. Kolebaniya cilindricheskogo puzyr’ka pod deistviem prodolnyh ili poperechnyh vibracii. Matematicheskoe modelirovanie v estestvennyh naukah, 2015, no. 1, pp. 189–194. (In Russian).

Alabuzhev A. A., Kaysina M. I. The translational oscillations of a cylindrical bubble in a bounded volume of a liquid with free deformable interface. Journal of Physics: Conference Series, 2016, vol. 681, 012043. DOI: 10.1088/1742-6596/681/1/012043

Lifshitz E. M., Pitaevskij L. P. Physical kinetics. Course of theoretical physics, vol. 10. Pergamon Press, 1981. 452 p.

Alabuzhev A.A. Axisymmetric oscillations of a cylindrical droplet with a moving contact line. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, no. 6, pp. 1006–1015. DOI: 10.1134/S0021894416060079

Alabuzhev A. A. Axisymmetric oscillations of a cylindrical drop in the final volume of fluid. Computational Mechanics of Continuous Media, 2016, vol.9, no. 3, pp. 316–330. (In Russian). DOI: 10.7242/1999-6691/2016.9.3.26

Alabuzhev A. A. Axisymmetric oscillations of a cylindrical drop in the final volume of fluid. Computational Mechanics of Continuous Media, 2016, vol.9, no. 4, pp. 453–465. (In Russian). DOI: 10.7242/1999-6691/2016.9.4.38

Alabuzhev A.A. Influence of a surface plates inhomogeneity on a translation oscillations of a drop. J. Phys.: Conf. Ser., 2017, vol. 894, 012002. DOI: 10.1088/1742-6596/894/1/012002

Borkar A., Tsamopoulus J. Boundary-layer analysis of dynamics of axisymmetric capillary bridges. Physics of Fluids A., 1991, vol. 3, no. 12, pp. 2866–2874.

Ting C.-L., Perlin M. Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: an experimental investigation. J. Fluid Mech., 1995, vol. 295, pp. 263–300. DOI: 10.1017/S0022112095001960

Perlin M., Schultz W.W., Liu Z. High Reynolds number oscillating contact lines. Wave Motion, 2004, vol. 40, no. 1, pp. 41–56. DOI: 10.1016/j.wavemoti.2003.12.011

Hocking L. M. Waves produced by a vertically oscillating plate. Journal of Fluid Mechanics, 1987, vol. 179, pp. 267–281. DOI: 10.1017/S0022112087001526

Fayzrakhmanova I. S., Straube A. V. Stick-slip dynamics of an oscillated sessile drop. Physics of Fluids, 2009, vol. 21, 072104. DOI: 10.1063/1.3174446

Alabuzhev A. A., Kashina M. A. The oscillations of cylindrical drop under the influence of a nonuniform alternating electric field. J. Phys.: Conf. Ser., 2016, vol. 681, 012042. DOI: 10.1088/1742-6596/681/1/012042

Alabuzhev A. A., Kashina M. A. The dynamics of hemispherical drop under the influence of a alternating electric field. J. Phys.: Conf. Ser., 2017, vol. 894, 012003. DOI: 10.1088/1742-6596/894/1/012003

Voinov O. V. Hydrodynamics of wetting. Fluid Dynamics. 1976, vol. 11, no. 5, pp. 714–721. DOI: 10.1007/BF01012963

Cox R. G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Flu-id Mech., 1986, vol. 168, pp. 169-194. DOI: 10.1017/S0022112086000332

De Genn P. G. Wetting: Statics and dynamics. Review of Modern Physics, 1985, vol. 57, pp. 827–863. DOI: 10.1103/RevModPhys.57.827

Voinov O. V. Dynamic edge angles of wetting upon spreading of a drop over a solid surface. J. Appl. Mech. Tech. Phys., 1999. vol. 40, no. 1, pp. 86–92. DOI: 10.1007/BF02467976

Pukhnachev V. V., Semenova I. B. Model problem of instantaneous motion of a three-phase contact line. J. Appl. Mech. Tech. Phys., 1999. vol. 40, no. 4, pp. 594-603. DOI: 10.1007/BF02468433

Blake T. D. The physics of moving wetting lines. J. Colloid Interface Sci., 2006, vol. 299, p. 1–13. DOI: 10.1016/j.jcis.2006.03.051

Shikhmurzaev Y. D. Singularities at the moving contact line. mathematical, physical and computational aspects. Physica D, 2006, vol. 217, no. 2, pp. 121–133. DOI: 10.1016/j.physd.2006.03.003

Kartavih N. N., Shklyaev S. V. O parametricheskom rezonanse polucilindricheskoi kapli na osciyliruyushei tverdoi podlozhke. Bulletin of Perm University. Series: Physics. 2007, no. 1(6), pp. 23–28. (In Russian).

Demin V. A. Problem of the free oscillations of a capillary bridge. Fluid Dynamics, 2008, vol. 43, no. 4, pp. 524–532. DOI: 10.1134/S0015462808040042

Bonn D., Eggers J., Indekeu J., et al. Wetting and spreading. Rev. Mod. Phys., 2009, vol. 81, pp. 739–805. DOI: 10.1103/RevModPhys.81.739

Ivantsov A. O. Akusticheskie kolebaniya polusfericheskoi kapli. Bulletin of Perm University. Series: Physics, 2012, no. 3(21), pp. 16–23. (In Russian).

Snoeijer J.H., Andreotti B. Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech., 2013, vol. 45, pp. 269–292. DOI: 10.1146/annurev-fluid-011212-140734

Andreotti B., Snoeijer J. Soft wetting and the Shut-tleworth effect, at the crossroads between thermo-dynamics and mechanics. Europhys. Lett., 2016, vol. 113, no. 6, 66001. DOI: 10.1209/0295-5075/113/66001

Zhang P., Mohseni K. Theoretical model of a finite force at the moving contact line. Int. J. Multiph. Flow, 2020, vol. 132, 103398. DOI: 10.1016/j.ijmultiphaseflow.2020.103398

Published

2020-12-25

How to Cite

Алабужев (Alexey A. Alabuzhev) А. А. (2020). Effect of the internal pressure on oscillations of a cylindrical gas bubble. Bulletin of Perm University. Physics, (4). https://doi.org/10.17072/1994-3598-2020-4-51-62

Issue

Section

Regular articles

Most read articles by the same author(s)