Effect of the internal pressure on oscillations of a cylindrical gas bubble
DOI:
https://doi.org/10.17072/1994-3598-2020-4-51-62Keywords:
gas bubble, forced oscillations, contact line dynamicsAbstract
Natural and forced oscillations of a gas bubble are studied. The bubble has the shape of a round cylinder in the state of equilibrium. It is bounded in the axial direction by two parallel solid surfaces and is surrounded by an incompressible liquid of a finite volume with a free outer surface. The entire system is under an alternating pressure field. The velocity of the contact line of three media (gas-liquid-solid substrate) is proportional to the deviation of the contact angle from the equilibrium value. The frequency of eigenmodes of a gas bubble can increase with an increase in the Hocking parameter, in contrast to the frequencies of an incompressible liquid drop, which only decrease. It is shown that radial oscillations of a cylindrical bubble are possible only in a finite volume of liquid. The effect of crossing the modes of natural oscillations is considered for the dissipative case. The amplitude-frequency characteristics are constructed for different values of the internal gas pressure. Resonance phenomena are found. It is shown that the external influence excites, first of all, volumetric oscillations of the bubble. Variations in shape are caused by the movement of the contact line. Expressions are found for the vibration amplitude in the case of a fixed contact line and a fixed contact angle.References
Shklyaev S., Straube A. V. Linear oscillations of a hemispherical bubble on a solid substrate. Physics of Fluids, 2008, vol. 20, 052102. DOI: 10.1063/1.2918728
Alabuzhev A. A. Behavior of a cylindrical bubble under vibrations. Computational Mechanics of Continuous Media, 2014, vol.7, no. 2, pp. 151–161. (In Russian). DOI: 10.7242/1999-6691/2014.7.2.16
Hocking L. M. The damping of capillary-gravity waves at a rigid boundary. Journal of Fluid Mechanics, 1987, vol. 179, pp. 253–266. DOI: 10.1017/S0022112087001514
Fayzrakhmanova I. S., Straube A. V., Shklyaev S. Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis. Physics of Fluids, 2011, vol. 23, 102105. DOI: 10.1063/1.3650280
Alabuzhev A. A., Kaysina M. I. Translational mode of eigen oscillations of a cylindrical bubble. Bulletin of Perm University. Series: Physics, 2015, no. 1(29), pp. 35–41. (In Russian).
Alabuzhev A. A., Kaysina M. I. Influence of contact line motion on axisymmetric vibrations of a cylindrical bubble. Bulletin of Perm University. Series: Physics, 2015, no. 2(30), pp. 56–68. (In Rus-sian).
Alabuzhev A. A., Kaysina M. I. Eigen azimuthal oscillations of a cylindrical bubble in final volume vessel. Bulletin of Perm University. Series: Physics, 2015, no. 3(31), pp. 38–47. (In Russian).
Kaysina M. I. Azimuthal modes of eigen oscillations of a cylindrical bubble. Bulletin of Perm University. Mathematics. Mechanics. Computer Science, 2015, no. 2(29), pp. 37–45. (In Russian).
Kaysina M. I. Kolebaniya cilindricheskogo puzyr’ka pod deistviem prodolnyh ili poperechnyh vibracii. Matematicheskoe modelirovanie v estestvennyh naukah, 2015, no. 1, pp. 189–194. (In Russian).
Alabuzhev A. A., Kaysina M. I. The translational oscillations of a cylindrical bubble in a bounded volume of a liquid with free deformable interface. Journal of Physics: Conference Series, 2016, vol. 681, 012043. DOI: 10.1088/1742-6596/681/1/012043
Lifshitz E. M., Pitaevskij L. P. Physical kinetics. Course of theoretical physics, vol. 10. Pergamon Press, 1981. 452 p.
Alabuzhev A.A. Axisymmetric oscillations of a cylindrical droplet with a moving contact line. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, no. 6, pp. 1006–1015. DOI: 10.1134/S0021894416060079
Alabuzhev A. A. Axisymmetric oscillations of a cylindrical drop in the final volume of fluid. Computational Mechanics of Continuous Media, 2016, vol.9, no. 3, pp. 316–330. (In Russian). DOI: 10.7242/1999-6691/2016.9.3.26
Alabuzhev A. A. Axisymmetric oscillations of a cylindrical drop in the final volume of fluid. Computational Mechanics of Continuous Media, 2016, vol.9, no. 4, pp. 453–465. (In Russian). DOI: 10.7242/1999-6691/2016.9.4.38
Alabuzhev A.A. Influence of a surface plates inhomogeneity on a translation oscillations of a drop. J. Phys.: Conf. Ser., 2017, vol. 894, 012002. DOI: 10.1088/1742-6596/894/1/012002
Borkar A., Tsamopoulus J. Boundary-layer analysis of dynamics of axisymmetric capillary bridges. Physics of Fluids A., 1991, vol. 3, no. 12, pp. 2866–2874.
Ting C.-L., Perlin M. Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: an experimental investigation. J. Fluid Mech., 1995, vol. 295, pp. 263–300. DOI: 10.1017/S0022112095001960
Perlin M., Schultz W.W., Liu Z. High Reynolds number oscillating contact lines. Wave Motion, 2004, vol. 40, no. 1, pp. 41–56. DOI: 10.1016/j.wavemoti.2003.12.011
Hocking L. M. Waves produced by a vertically oscillating plate. Journal of Fluid Mechanics, 1987, vol. 179, pp. 267–281. DOI: 10.1017/S0022112087001526
Fayzrakhmanova I. S., Straube A. V. Stick-slip dynamics of an oscillated sessile drop. Physics of Fluids, 2009, vol. 21, 072104. DOI: 10.1063/1.3174446
Alabuzhev A. A., Kashina M. A. The oscillations of cylindrical drop under the influence of a nonuniform alternating electric field. J. Phys.: Conf. Ser., 2016, vol. 681, 012042. DOI: 10.1088/1742-6596/681/1/012042
Alabuzhev A. A., Kashina M. A. The dynamics of hemispherical drop under the influence of a alternating electric field. J. Phys.: Conf. Ser., 2017, vol. 894, 012003. DOI: 10.1088/1742-6596/894/1/012003
Voinov O. V. Hydrodynamics of wetting. Fluid Dynamics. 1976, vol. 11, no. 5, pp. 714–721. DOI: 10.1007/BF01012963
Cox R. G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Flu-id Mech., 1986, vol. 168, pp. 169-194. DOI: 10.1017/S0022112086000332
De Genn P. G. Wetting: Statics and dynamics. Review of Modern Physics, 1985, vol. 57, pp. 827–863. DOI: 10.1103/RevModPhys.57.827
Voinov O. V. Dynamic edge angles of wetting upon spreading of a drop over a solid surface. J. Appl. Mech. Tech. Phys., 1999. vol. 40, no. 1, pp. 86–92. DOI: 10.1007/BF02467976
Pukhnachev V. V., Semenova I. B. Model problem of instantaneous motion of a three-phase contact line. J. Appl. Mech. Tech. Phys., 1999. vol. 40, no. 4, pp. 594-603. DOI: 10.1007/BF02468433
Blake T. D. The physics of moving wetting lines. J. Colloid Interface Sci., 2006, vol. 299, p. 1–13. DOI: 10.1016/j.jcis.2006.03.051
Shikhmurzaev Y. D. Singularities at the moving contact line. mathematical, physical and computational aspects. Physica D, 2006, vol. 217, no. 2, pp. 121–133. DOI: 10.1016/j.physd.2006.03.003
Kartavih N. N., Shklyaev S. V. O parametricheskom rezonanse polucilindricheskoi kapli na osciyliruyushei tverdoi podlozhke. Bulletin of Perm University. Series: Physics. 2007, no. 1(6), pp. 23–28. (In Russian).
Demin V. A. Problem of the free oscillations of a capillary bridge. Fluid Dynamics, 2008, vol. 43, no. 4, pp. 524–532. DOI: 10.1134/S0015462808040042
Bonn D., Eggers J., Indekeu J., et al. Wetting and spreading. Rev. Mod. Phys., 2009, vol. 81, pp. 739–805. DOI: 10.1103/RevModPhys.81.739
Ivantsov A. O. Akusticheskie kolebaniya polusfericheskoi kapli. Bulletin of Perm University. Series: Physics, 2012, no. 3(21), pp. 16–23. (In Russian).
Snoeijer J.H., Andreotti B. Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech., 2013, vol. 45, pp. 269–292. DOI: 10.1146/annurev-fluid-011212-140734
Andreotti B., Snoeijer J. Soft wetting and the Shut-tleworth effect, at the crossroads between thermo-dynamics and mechanics. Europhys. Lett., 2016, vol. 113, no. 6, 66001. DOI: 10.1209/0295-5075/113/66001
Zhang P., Mohseni K. Theoretical model of a finite force at the moving contact line. Int. J. Multiph. Flow, 2020, vol. 132, 103398. DOI: 10.1016/j.ijmultiphaseflow.2020.103398
Downloads
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.