The effect of functionalization of carbon nanoshells on their electrical properties

Authors

  • Алексей Владимирович Сосунов (Alex V. Sosunov) Perm State University
  • Кирилл Борисович Циберкин (Kirill Tsiberkin) Perm State University http://orcid.org/0000-0002-8725-7743
  • Виктор Карлович Хеннер (Victor K. Henner) Perm State University

DOI:

https://doi.org/10.17072/1994-3598-2019-2-63-68

Keywords:

carbon nanoshell, functionalization, plasma, resistance, band gap

Abstract

We present an experimental and theoretical study of electronic properties of carbon nanoshells with pore size 3 nm after its functionalization if fluorine radio-frequency plasma. The synthesized samples are CF0.05, CF0.31 and CF0.50 after 5, 15 and 30 hours of functionalization. It is shown that the functionalization time increase changes the electric resistance from 50 to 950 Ohm with stable structure. Theoretical estimate of the band gap with of carbon nanoshells is 0.13 eV. We assume that such small band gap (e.g., fully fluorinated one-layer graphene has ~2–3 eV gap) is a result of incomplete functionalization and influence of additional carbon layers inside the shell

Author Biography

Кирилл Борисович Циберкин (Kirill Tsiberkin), Perm State University

кандидат физико-математических наук, без звания кафедра теоретической физики, доцент

References

Shehzad K., Xu Y., Gao C., Duan X. Three-dimensional macro-structures of two-dimensional nanomaterials. Chemical Society Reviews. 2016, vol. 45, pp. 5541–5588. DOI: 10.1039/c6cs00218h

Tressaud A., Durand E., Labrugere C. Surface modification of several carbon-based materials: comparison between CF4 RF plasma and direct F2-gas fluorination routes. Journal of Fluorine Chem-istry, 2004, vol. 125, pp. 1639–1648. DOI: 10.1016/j.jfluchem.2004.09.022

Yang G.-H., Bao D., Liu H., Zhang D., Wang N., Li H. Functionalization of graphene and applications of the derivatives. Journal of Inorganic Organometallic Polymers, 2017, vol. 27, pp. 1129–1141. DOI: 10.1007/s10904-017-0597-6

Esquinazi P. D. Basic physics of functionalized graphene. Cham, Switzerland: Springer, 2016. 185 p.

Wang B., Wang J., Zhu J. Fluorination of gra-phene: a spectroscopic and microscopic study. ACS Nano. 2014, vol. 8, pp. 1862–1870.

DOI: 10.1021/nn406333f

Tahara K., Iwasaki T., Matsutani A., Hatano M. Effect of radical fluorination on mono- and bi-layer graphene in Ar/F2 plasma. Applied Physics Letters, 2012, vol. 101, 163105. DOI: 10.1063/1.4760268

Jayasinghe R., Thapa A. K., Dharmasena R. R., et. al. Optimization of multi-walled carbon nano-tube based CFx electrodes for improved primary and secondary battery performances. Journal of Power Sources. 2014, vol. 253, pp. 404–411. DOI: 10.1016/j.jpowsour.2013.12.076

Peltekis N., Kumar S., McEvoy N., Lee K. et al. The effect of downstream plasma treatments on graphene surfaces. Carbon. 2012, vol. 50, pp. 395–403. DOI: 10.1016/j.carbon.2011.08.052

An K. H., Heo J. G., Jeon K. G. et. al. X-ray photo-emission spectroscopy study of fluorinated single-walled carbon nanotubes. Applied Physics Letters. 2002, vol. 80, pp. 4235-4237. DOI: 10.1063/1.1482801

Zhao R., Jayasingha R., Sherehiy A., et. al. In situ transport measurements and band gap formation of fluorinated graphene. Journal of Physical Chemistry. 2015, vol. 119, pp. 20150–20155. DOI: 10.1021/acs.jpcc.5b06111

Nourbakhsh A., Cantoro M., Vosch T., Pourtois G., et al. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, vol. 21, 435203. DOI: 10.1088/0957-4484/21/43/435203

Gargiulo F., Autes G. et al. Electronic transport in graphene with aggregated hydrogen adatoms. Physical Review Letters, 2014, vol. 113, 246601. DOI: 10.1103/PhysRevLett.113.246601

Rudakov G. A., Sosunov A. V., Ponomarev R. S., Khenner V. K., Reza Md. S., Sumanasekera G. Synthesis of hollow carbon nanoshells and their application for supercapacitors. Physics of the Solid State, 2018, vol. 60, no. 1, pp. 167–172. DOI: 10.1134/S1063783418010213]

Ziolkowska D. A., Jangam J. S. D., et. al. Simple synthesis of highly uniform bilayer-carbon nanocages. Carbon. 2017, vol. 115, pp. 617–624. DOI: 10.1016/j.carbon.2017.01.055

Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of graphene. Reviews of Modern Physics, 2009, vol. 81, 109. DOI: 10.1103/RevModPhys.81.109

Kittel C. Quantum theory of solids. New York: Wiley, 1987. 528 p.

Neamen D. A. Semiconductor physics and devices. Basic Principles. New-York: McGraw-Hill, 2003. 567 p.

Feng W., Long P., Feng Y., Li Y. Two‐dimen-sional fluorinated graphene: synthesis, structures, proper-ties and applications. Advanced Science, 2016, vol. 3, 1500413. DOI: 10.1002/advs.201500413

Published

2019-08-13

How to Cite

Сосунов (Alex V. Sosunov) А. В., Циберкин (Kirill Tsiberkin) К. Б., & Хеннер (Victor K. Henner) В. К. (2019). The effect of functionalization of carbon nanoshells on their electrical properties. Bulletin of Perm University. Physics, (2). https://doi.org/10.17072/1994-3598-2019-2-63-68

Issue

Section

Regular articles

Most read articles by the same author(s)