On relationships between the distribution of Watanabe–Strogatz phases and circular cumulants

Authors

  • Денис Сергеевич Голдобин (Denis S. Goldobin) Institute of Continuous Media Mechanics UB RAS; Perm State University
  • Людмила Сергеевна Клименко (Lyudmila S. Klimenko) Institute of Continuous Media Mechanics UB RAS; Perm State University

DOI:

https://doi.org/10.17072/1994-3598-2019-2-24-34

Keywords:

Watanabe–Strogatz theory, Ott–Antonsen theory, circular cumulants

Abstract

The theories of Watanabe–Strogatz and Ott–Antonsen served as the basis for rigorous and comprehensive investigations of collective phenomena in a broad class of paradigmatic models of en-sables of coupled oscillators. Recently, the “circular cumulant” approach was suggested for constructing a perturbation theory for the Ott–Anthonsen approach. In this paper we derived the relationship between the distribution of Watanabe–Strogatz phases and the circular cumulants of the original phases. These relationships are important for interpreting the approach of circular cumulants in the context of the Watanabe–Strogatz and Ott–Anthonsen theories. Particular attention is devoted to the case of the hierarchy of circular cumulants; this case is typical when constructing perturbation theories on top of the Watanabe–Strogats and Ott–Anthonsen theories.

References

Acebrón J. A., Bonilla L. L., Vicente C. J. P., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics. 2005, vol. 77, no. 1, pp. 137–185.

Pikovsky A., Rosenblum M. Dynamics of globally coupled oscillators: Progress and perspectives. Chaos. 2015, vol. 25, no. 9, 097616.

Watanabe S., Strogatz S. H. Integrability of a globally coupled oscillator array. Physical Review Letters. 1993, vol. 70, no. 16, 2391.

Watanabe S., Strogatz S. H. Constants of motion for superconducting Josephson arrays. Physica D. 1994, vol. 74, no. 3–4, pp. 197–253.

Marvel S. A., Mirollo R. E., Strogatz S. H. Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action. Chaos. 2009, vol. 19, no. 4, 043104.

Ott E., Antonsen T. M. Low dimensional behavior of large systems of globally coupled oscillators Chaos. 2008, vol. 18, no. 3, 037113.

Tyulkina I. V., Goldobin D. S., Klimenko L. S., Pikovsky A. Dynamics of noisy oscillator populations beyond the Ott-Antonsen ansatz. Physical Review Letters. 2018, vol. 120, no. 26, 264101.

Goldobin D. S., Tyulkina I. V., Klimenko L. S., Pikovskii A. Towards the description of collective dynamics in ensembles of real oscillators. Bulletin of Perm University. Physics. 2018, no. 3 (41), pp. 5–7 (In Russian).

Goldobin D. S., Tyulkina I. V., Klimenko L. S., Pikovsky A. Collective mode reductions for populations of coupled noisy oscillators. Chaos. 2018, vol. 28, no. 10, 101101.

Tyulkina I. V., Goldobin D. S., Klimenko L. S., Pikovsky A. Two-Bunch Solutions for the Dynamics of Ott–Antonsen Phase Ensembles. Radiophysics and Quantum Electronics. 2019, vol. 61, no. 8–9, pp. 640–649.

Vlasov V., Rosenblum M., Pikovsky A. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe–Strogatz integrability. Journal of Physics A: Mathematical and Theoretical. 2016, vol. 49, no. 31, 31LT02.

Pikovsky A., Rosenblum M. Partially integrable dynamics of hierarchical populations of coupled oscillators. Physical Review Letters. 2008, vol. 101, no. 26, 264103.

Pazó D., Montbrió E. Low-dimensional dynamics of populations of pulse-coupled oscillators. Physical Review X. 2014, vol. 4, no. 1, 011009.

Montbrió E., Pazó D., Roxin A. Macroscopic description for networks of spiking neurons. Physical Review X. 2015, vol. 5, no. 2, 021028.

Chen B., Engelbrecht J. R., Mirollo R. Hyperbolic geometry of Kuramoto oscillator networks. Journal of Physics A: Mathematical and Theoretical. 2017, vol. 50, no. 35, 355101.

Abrams D. M., Mirollo R., Strogatz S. H., Wiley D. A. Solvable model for chimera states of coupled oscillators. Physical Review Letters. 2008, vol. 101, no. 8, 084103.

Nagai K. H., Kori H. Noise-induced synchronization of a large population of globally coupled non-identical oscillators. Physical Review E. 2010, vol. 81, no. 6, 065202.

Braun W., Pikovsky A., Matias M. A., Colet P. Global dynamics of oscillator populations under common noise. EPL (Europhysics Letters). 2012, vol. 99, no. 2, 20006.

Pimenova A. V., Goldobin D. S., Rosenblum M., Pikovsky A. Interplay of coupling and common noise at the transition to synchrony in oscillator populations. Scientific Reports. 2016, vol. 6, 38518.

Goldobin D. S., Dolmatova A. V., Rosenblum M., Pikovsky A. Synchronization in Kuramoto–Sakaguchi ensembles with competing influence of common noise and global coupling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2017, vol. 25, no. 6, pp. 5–37 (In Russian).

Dolmatova A. V., Goldobin D. S., Pikovsky A. Synchronization of coupled active rotators by common noise. Physical Review E. 2017, vol. 96, no. 6, 062204.

Zaks M. A., Tomov P. Onset of time dependence in ensembles of excitable elements with global repulsive coupling. Physical Review E. 2016, vol. 93, no. 2, 020201.

Pietras B., Daffertshofer A. Ott-Antonsen attractiveness for parameter-dependent oscillatory systems. Chaos. 2016, vol. 26, no. 10, 103101.

Hannay K. M., Forger D. B., Booth V. Macroscopic models for networks of coupled biological oscillators. Science Advances. 2018, vol. 4, no. 8, e1701047

Published

2019-08-13

How to Cite

Голдобин (Denis S. Goldobin) Д. С., & Клименко (Lyudmila S. Klimenko) Л. С. (2019). On relationships between the distribution of Watanabe–Strogatz phases and circular cumulants. Bulletin of Perm University. Physics, (2). https://doi.org/10.17072/1994-3598-2019-2-24-34

Issue

Section

Regular articles

Most read articles by the same author(s)