Interfacial wave dynamics in a two-layer system of inviscid liquids subject to horizontal vibrations

Authors

  • Анастасия Владимировна Долматова (Anastasiya V. Dolmatova) Institute of Continuous Media Mechanics UB RAS
  • Денис Сергеевич Голдобин (Denis S. Goldobin) Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.17072/1994-3598-2018-4-38-45

Keywords:

horizontal vibrations, immiscible liquids, Boussinesq equation

Abstract

We study the dynamics of waves at the interface in a two-layer system of inviscid immiscible liquids subject to high-frequency horizontal vibrations. The consideration is performed within the framework of the long-wavelength approximation, which is relevant as, for sufficiently thin layers, the linear instability of the flat-interface state is a long-wavelength one. Nonlinear governing equations of the interface dynamics for two- and three-dimensional flows are obtained for arbitrary ratio of the layer thicknesses. For the three-dimensional case, an analog of the Squire’s theorem can be formulated; the longitudinal perturbations are most dangerous. The wave dynamics equations are integrable and can be compared with the Boussinesq equation for the gravity waves in shallow water. With the latter examination, one can compare the effect of the vibrational field to the action of gravity, and also consider the possibility of a sustainable existence of the state where the heavy liquid overlies the light one, that is, state which corresponds to an effective gravity inversion.

References

Wolf G. H. The dynamic stabilization of the Rayleigh–Taylor instability and the corresponding dynamic equilibrium. Zeitschrift für Physik A Hadrons and nuclei. 1969, vol. 227, no. 3, pp. 291–300.

Wolf G. H. Dynamic stabilization of the interchange instability of a liquid–gas interface. Physical Review Letters. 1970, vol. 24, no. 9, pp. 444–446.

Thiele U., Vega J. M., Knobloch E. Long–wave Marangoni instability with vibration. Journal of Fluid Mechanics, 2006. vol. 546. pp. 61–87.

Shklyaev S., Alabuzhev A. A., Khenner M. Influence of a longitudinal and tilted vibration on stability and dewetting of a liquid film. Physical Review E, 2009, vol. 79,. no. 5, pp. 051603.

Nepomnyashchy A. A., Simanovskii I. B. The influence of vibration on Marangoni waves in two–layer films. Journal of Fluid Mechanics. 2013. vol. 726. pp. 476–496.

Bratsun D A., Stepkina O. S., Kostarev K. G., Mizev A. I., Mosheva E A. Development of concentration–dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia. Microgravity Science and Technology. 2016. V. 28. no. 6. pp. 575–585.

Smorodin B. L., Myznikova B. I., Keller I. O. Asymptotic laws of thermovibrational convecton in a horizontal fluid layer. Microgravity Science and Technology, 2017, vol. 29, pp. 19–28.

Lyubimova T., Ivantsov A., Garrabos Y., Lecoutre C., Gandikota G., Beysens D. Band instability in near–critical fluids subjected to vibration under weightlessness. Physical Review E, 2017, vol. 95, no. 1, pp. 013105.

Lyubimov D. V., Cherepanov A. A. Development of a steady relief at the interface of fluids in a vibrational field. Fluid Dynamics, 1986, vol. 21, no 6, pp. 849–854.

Benilov E. S., Chugunova M. Waves in liquid films on vibrating substrates. Physical Review E, 2010, vol. 81, no. 3, pp. 036302.

Goldobin D. S., Kovalevskaya K. V., Lyubimov D V. Elastic and inelastic collisions of interfacial solitons and integrability of a two–layer fluid system subject to horizontal vibrations. Europhysics Letters, 2014, vol. 108, no. 5, pp. 54001.

Goldobin D. S., Pimenova A. V., Kovalevskaya K. V., Lyubimov D. V., Lyubimova T. P. Running interfacial waves in a two–layer fluid system subject to longitudinal vibrations. Physical Review E, 2015, vol. 91, no. 5, pp. 053010.

Pimenova A. V., Goldobin D. S., Lyubimova T. P. Comparison of the effect of horizontal vibrations on interfacial waves in a two-layer system of inviscid liquids to effective gravity inversion. Microgravity Science and Technology, 2018, vol. 30, pp. 1–10.

Boussinesq J. Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de mathématiques pures et appliquée, 1872, pp. 55–108.

Choi W., Camassa R. Fully nonlinear internal waves in a two–fluid system. Journal of Fluid Mechanics, 1999, vol. 396, pp. 1–36.

Manoranjan V. S., Ortega T., Sanz-Serna J. M. Soliton and antisoliton interactions in the «good» Boussinesq equation. Journal of mathematical physics, 1988, vol. 29, no. 9, pp. 1964–1968.

Bogdanov L. V., Zakharov V. E. The Boussinesq equation revisited. Physica D, 2002, vol. 165, no. 3–4, pp. 137–162.

Published

2018-12-29

How to Cite

Долматова (Anastasiya V. Dolmatova) А. В., & Голдобин (Denis S. Goldobin) Д. С. (2018). Interfacial wave dynamics in a two-layer system of inviscid liquids subject to horizontal vibrations. Bulletin of Perm University. Physics, (4(42). https://doi.org/10.17072/1994-3598-2018-4-38-45

Issue

Section

Regular articles

Most read articles by the same author(s)