Spin-wave approach to the 2D paramagnetic under the magnetic field

Authors

  • Кирилл Борисович Циберкин (Kirill Tsiberkin) Perm State University http://orcid.org/0000-0002-8725-7743
  • Татьяна Сергеевна Белозерова (Tatyana Belozerova) Perm State University
  • Виктор Карлович Хеннер (Victor Henner) Perm State University; University of Louisville

DOI:

https://doi.org/10.17072/1994-3598-2016-2-35-48

Abstract

We study the possibility of collective spin excitations in 2D paramagnetic crystal with the dipole-dipole interaction and without the exchange interaction. The crystal is under uniform constant magnetic field. All the magnetic moments are oriented along the magnetic field at the saturation. Using the Holstein–Primakoff transformation, we describe the properties of paramagnetic in terms of the spin waves at the low-temperature limit. We obtain the dispersion relations for spin waves at the square and hexagonal flat lattices. It is shown the wavelength of the collective excitations and their bandwidth are determined by the external magnetic field direction. The long-wave perturbations have the lowest energy when the magnetic field is orthogonal to the lattice plane, and the short-wave perturbations are the most preferable when the field is parallel to the lattice. We provide the direct numerical simulation of the group of interacting magnetic moments under the constant external field with different orientation to the lattice. The total transversal spin and dipole energy evolution in time and their Fourier-spectrum are considered. The numerical results match the analytical calculation in spin-wave approach.Received 22.08.2016; accepted 31.08.2016

Author Biography

Кирилл Борисович Циберкин (Kirill Tsiberkin), Perm State University

кафедра теоретической физики, старший преподаватель

References

Abragam A. The principles of nuclear magnetism. Oxford, UK: Clarendon Press, 1961. 599 p.

Goldman M. Formal theory of spin–lattice relaxation. Journal of Magnetic Resonance, 2001, vol. 149, pp. 160–187.

Henner V., Desvaux H., Belozerova T., Marion D., Kharebov P., Klots A. Collective effects due to dipolar fields as the origin of the extremely random behavior in hyperpolarized NMR maser: A theoretical and numerical study. Journal of Chemical Physics, 2013, vol. 139, 144111.

Vonsovskii S. V. Magnetism. New York: Wiley, 1974, 2 vol., 1256 p.

Gopal E. S. R. Specific heat at low temperatures. New-York: Springer, 1966. 240 p.

Nallamuthu S., Rashid T. P., Krishnakumar V., Besnard C., Hagemann H., Reiffers M., Nagalakshmi R. Anisotropic magnetic, transport and thermodynamic properties of novel tetragonal Ce2RhGa12 compound. Journal of Alloys and Compounds, 2014, vol. 604, pp. 379–383.

Liang T., Koohpayeh S. M., Krizan J. W., McQueen T. M., Cava R. J., Ong N. P. Heat capacity peak at the quantum critical point of the trans-verse Ising magnet CoNb2O6. Nature Communications, 2015, vol. 6, 7611.

Abragam A., Goldman M. Nuclear magnetism: order and disorder. Oxford: Clarendon Press, 1982, 626 p.

White R. M. Quantum theory of magnetism: Magnetic properties of materials (3rd ed.), Berlin: Springer–Verlag, 2007, 362 p.

Slichter P. D. Principles of Magnetic Resonance. Springer Series in Solid-State Sciences, Book 1 (3rd ed). New York: Springer. 1990. 658 p.

Dubovik V. M., Lunegov I. V., Martsenyuk M. A. Theory of toroid responce observation in nuclear magnetic resonance. Physics of Elementary Particles and Atomic Nuclei, 1995, vol. 26, no. 1, pp. 72–145 (In Russian).

Sullivan N. S., Pound R. B. Splitting of NMR spectrum of solid hydrogen. Physics Letters A, 1972, vol. 39 (1), pp. 23–24.

Piette L. H., Rempel R. C., Weaver H. E., Flournoy J. M. EPR studies of electron irradiated ice and solid hydrogen. Journal of Chemical Physics, 1959, vol. 30, 1623.

Feldman V. I., Sukhov F. F., Orlov A. Y. Hydrogen atoms in solid xenon: trapping site structure, distribution, and stability as revealed by EPR studies in monoisotopic and isotopically enriched xen-on matrices. Journal of Chemical Physics, 2008, vol. 128 (21), 214511.

Kumanagi J. Hydrogen molecular ions in solid parahydrogen: EPR studies at cryogenic temperatures. In: Lund A., Shiotani M. (Eds.) Applications of EPR in radiation research. Cham, Switzerland: Springer International Publishing, 2014, pp. 117–147.

Lide D. R. (Ed.). CRC handbook of chemistry and physics (90th ed.). Boca Raton: CRC Press, 2009, 2804 p.

Aronov A. G. Spin waves in a medium with nonequilibrium spin orientation. Soviet Physics JETP, 1977, vol. 46, no. 2, pp. 301–304.

Žutić I., Fabian Ja., Das Sarma S. Spintronics: Fundamentals and applications. Reviews of Modern Physics, 2004, vol. 76 (2), pp. 323–410.

Zyuzin A. A., Zyuzin A. Yu. Non-equilibrium spin waves in paramagnetic metals. Europhysics Letters, 2010, vol. 90, 67007.

Stone N. J. Table of nuclear magnetic dipole and electric quadrupole moments. Atomic Data and Nuclear Data Tables, 2005, vol. 90, pp. 75–176.

Bleaney B. Cryomagnetism and magnetic resonance in Oxford physics. In: Eaton G. R., Eaton S. S., Salikhov K. M. (Eds.) Foundations of modern EPR. Singapore: World Scientific Pub Co Inc., 1998. 818 p.

Henner V. K., Henner E. K. About the velocity of establishment of quasi-equilibrium in magnetically diluted spin-systems. Physics Letter A, 1988, vol. 127, no. 6-7, pp. 322–324.

Holstein T., Primakoff H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Physical Review, 1940, vol. 58, pp. 1098–1113.

Fel'dman E. B., Khitrin A. K. Spin-wave theory of NMR in solids at low temperatures. Journal of Experimental and Theoretical Physics, 1990, vol. 71, no. 3, pp. 538–543.

Fel'dman E. B., Khitrin A. K. NMR at high spin polarization: a spin-wave approach. Physics Letters A, 1991, vol. 153, no. 1, pp. 60–62.

Provotorov B. N. Magnetic Resonance Saturation in Crystals. Soviet Physics JETP, 1961, vol. 14 (5), pp. 1126–1131.

Tsiberkin K. Collective spin excitations in 2D paramagnet with dipole interaction. European Physical Journal B, 2016, vol. 89 (2), 54.

Fel’dman E. B. Private communication. 2016.

Goldstein L. Thermal properties of paramagnetic solid Helium-3. Journal of Low Temperature Physics, 1983, vol. 50 (3), pp. 267–299.

Andreeva T. L., Rubin P. L. Collective modes in cold paramagnetic gases. Quantum Electronics, 2014, vol. 44 (2), pp. 182–183.

Janssen L. M. C., van der Avoird A., Groenenboomb G. C. On the role of the magnetic dipolar interaction in cold and ultracold collisions: numerical and analytical results for NH(3Σ−)+NH(3Σ−). European Physical Journal D, 2011, vol. 65, pp. 177–187.

Landau L. D., Lifshitz E. M. Course of Theoretical Physics, vol. 5: Statistical Physics, p. 1 (3rd ed.), Oxford: Butterworth-Heinemann, 1980, 544 p.

Dyson F. J. General theory of spin-wave interactions. Physical Review, 1956, vol. 102, no. 5, pp. 1217–1230.

Dyson F. J. Thermodynamic behavior of an ideal ferromagnet. Physical Review, 1956, vol. 102, no. 5, pp. 1230–1244.

Akhiezer A. I., Barʹyakhtar V. G., Peletminskii S. V. Spin waves. Amsterdam: North-Holland, 1968, 369 p.

Prabhakar A., Stancil D. D. Spin waves: Theory and applications, New York: Springer, 2009, 348 p.

Wallace P. R. The band theory of graphite. Physical Review, 1947, vol. 71 (9), pp. 622–634.

Belozerova T. S., Henner V. K. MagnetoDynamics Certificate of state registration of the computer program N. 2014617685. 2014.

Henner V., Klots A., Belozerova T. The quantum mechanics correspondence principle for spin systems and its application for some magnetic resonance problems. eprint arXiv:1507.03043.

Published

2017-03-04

How to Cite

Циберкин (Kirill Tsiberkin) К. Б., Белозерова (Tatyana Belozerova) Т. С., & Хеннер (Victor Henner) В. К. (2017). Spin-wave approach to the 2D paramagnetic under the magnetic field. Bulletin of Perm University. Physics, (2(33). https://doi.org/10.17072/1994-3598-2016-2-35-48

Issue

Section

Regular articles

Most read articles by the same author(s)