Magnetic response of triangular graphone

Authors

  • Кирилл Борисович Циберкин (Kirill Tsiberkin) Perm State University http://orcid.org/0000-0002-8725-7743
  • Мартин Гажи (Martin Gaži) Lincoln College, University of Oxford

DOI:

https://doi.org/10.17072/1994-3598-2018-3-65-72

Keywords:

graphone, magnetization response, spin waves

Abstract

We consider triangular graphone structure – a semi-hydrogenated layer of graphene with hydrogen atoms boned to one of its sub-lattices only. The response function of graphone to an external magnetic field is evaluated in general using the Heisenberg Hamiltonian model of the structure with exchange energy coefficient J0 of unknown value (negative due to ferromagnetic behaviour of triangular graphone). The spin wave approach in the limit of near zero temperature is used for the description of the magnetisation. A specific case when the graphone is exposed to a magnetic pulse with a given carrier frequency is examined in greater depth. To obtain the magnetization response, integration over both the frequency space and momentum space is necessary. Due to inapplicability of the isotropic approximation for the given geometry of graphone, integration over momentum space is performed numerically. The calculations show that the resonance of the system occurs at frequencies which correspond to the upper limit of the spin wave energy band and the saddle points of the energy surface. Using these results, further experimental investigation based on THz or far-infrared spectroscopy can be performed, which can determine the as-yet-unknown exchange energy coefficient J0. The coefficient can in turn provide an estimate of a temperature range for which the spin wave approach utilised in our investigation is valid.

Author Biography

Кирилл Борисович Циберкин (Kirill Tsiberkin), Perm State University

кафедра теоретической физики, старший преподаватель

References

Castro Neto A.H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. The electronic properties of graphene. Reviews of Modern Physics, 2009, vol. 81, no. 109. DOI: 10.1103/RevModPhys.81.109

Geim A. K., Novoselov K. S. The rise of graphene. Nature Materials, 2007, vol. 6, pp. 183–191. DOI: 10.1038/nmat1849

Geim A. K. Graphene: status and prospects. Science, 2009, vol. 324, 5934, pp. 1530–1534. DOI: 10.1126/science.1158877

Saremi S. RKKY in half-filled bipartite lattice: graphene as an example. Physical Review B, 2007, vol. 76, 184430. DOI: 10.1103/PhysRevB.76.184430

Britnell L., Gorbachev R. V., Jalil R. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, vol. 335, no. 6071, pp. 947–950. DOI: 10.1126/science.1218461

Sorella S., Tosatti E. Semimetal-Insulator transition of the Hubbard model in the honeycomb lattice. Europhysics Letters, 1992, vol. 19, no. 8, pp. 699–704. DOI: 10.1209/0295-5075/19/8/007

Hemmatiyan S., Polini M., Abanov A. et al. Stable path to ferromagnetic hydrogenated graphene. Physical Review B, 2014, vol. 90, 035433. DOI: 10.1103/PhysRevB.90.035433

Boukhvalov D. W., Katsnelson M. I. Chemical functionalization of graphene. Journal of Physics: Condensed Matter, 2009, vol. 21, 344205. DOI: 10.1088/0953-8984/21/34/344205

Brar V. W., Decker R., Solowan H. et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface Nature Physics, 2011, vol. 7, pp. 43–47. DOI: 10.1038/NPHYS1807

Eelbo T., Waśniowska M., Gyamfi M. et al. Influence of the degree of decoupling of graphene on the properties of transition metal adatoms. Physical Review B, 2013, vol. 87, 205443. DOI: 10.1103/PhysRevB.87.205443

Kogan E. RKKY interaction in gapped or doped graphene. Graphene, 2013, vol. 2, no. 1, pp. 8–12. DOI: 10.4236/graphene.2013.21002

Zhou J., Wang Q., Sun Q., Chen X. S., Kawazoe Y., Jena P. Ferromagnetism in semihydrogenated graphene sheet Nano Letters, 2009, vol. 9, no. 11, pp. 3867–3870. DOI: 10.1021/nl9020733

Podlivaev A. I., Openov L. A. On the thermal stability of graphone. Semiconductors, 2011, vol. 45, no. 7, pp. 958–961. DOI: 10.1134/S1063782611070177

Feng L., Zhang W. X. The structure and magnetism of graphone. AIP Advances, 2012, vol. 2, 042138. DOI: 10.1063/1.4766937

Kharche N., Nayak S. K. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Letters, 2011, vol. 11, no. 12, pp. 5274–5278. DOI: 10.1021/nl202725w

Boukhvalov D. W. Stable antiferromagnetic graphone. Physica E, 2010, vol. 43, pp. 199–201. DOI: 10.1016/j.physe.2010.07.015

Deacon R. S., Chuang K.-C., Nicholas R. J. et al. Cyclotron resonance study of the electron and hole velocity in graphene monolayers. Physical Review B, 2007, vol. 76, 081406. DOI: 10.1103/PhysRevB.76.081406

Holstein T., Primakoff H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Physical Review, 1940, vol. 58, no. 1098. DOI: 10.1103/PhysRev.58.1098

Zubarev D. N. Double-time Green functions in statistical physics. Soviet Physics Uspekhi, 1960, vol. 3, pp. 320–345. DOI: 10.1070/PU1960v003n03ABEH003275

Rudenko A. N., Keil F. J., Katsnelson M. I., Lichtenstein A. I. Exchange interactions and frustrated magnetism in single-side hydrogenated and fluorinated graphene.Physical Review B, 2013, vol. 88, 081405(R). DOI: 10.1103/PhysRevB.88.081405

Mazurenko V. V., Rudenko A. N., Nikolaev S. A., Medvedeva D. S., Lichtenstein A. I., Katsnelson M. I. Role of direct exchange and Dzyaloshinskii–Moriya interactions in magnetic properties of graphene derivatives: C2F and C2H. Physical Review B, 2016, vol. 94, 214411. DOI: 10.1103/PhysRevB.94.214411

Downloads

Published

2018-11-21

How to Cite

Циберкин (Kirill Tsiberkin) К. Б., & Гажи (Martin Gaži) М. (2018). Magnetic response of triangular graphone. Bulletin of Perm University. Physics, (3(41). https://doi.org/10.17072/1994-3598-2018-3-65-72

Issue

Section

Regular articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.