Закономерности распределения борной кислоты в системах на основе технических поверхностно-активных веществ и солей магния
DOI:
https://doi.org/10.17072/2223-1838-2021-1-59-70Ключевые слова:
борная кислота, поверхностно-активные вещества, экстракция, соли магнияАннотация
В работе исследовано распределение борной кислоты и тетрабората натрия в системах на основе технических оксиэтилированных поверхностно-активных веществ (оксифоса Б, синтамида-5, синтанолов ДС-10 и АЛМ-10) и хлорида, нитрата или сульфата магния. На примере системы хлорид магния – оксифос Б – вода показаны зависимости степени извлечения борной кислоты и хлорида магния от содержания макрокомпонентов в системе, а также влияние начальной концентрации борной кислоты или тетрабората натрия и наличия в растворе сильных кислот на степень извлечения бора. Установлено, что в системе хлорид магния – оксифос Б – вода невозможно достичь разделения борной кислоты и хлорида магния. На основании анализа полученных данных установлено, что извлечение борной кислоты увеличивается с ростом объема экстракта и, следовательно, концентрации воды в нем.Библиографические ссылки
Позин М.Е. Технология минеральных солей. Л.: Госхимиздат, 1961. 1008 с.
Виноградов Е.Е., Азарова Л.А. Экстракция борной кислоты органическими растворителя-ми // Журнал неорганической химии. 1967. Т. 13, № 6. С. 1624–1627.
Танашева М.Р., Беремжанов Б.А., Цыганкова И.И., Казымбетова М.С. Фазовое равнове-сие в системах H3BO3 – вода – спирты // Журнал неорганической химии. 1987. Т. 32, № 5. С. 992–995.
Виноградов Е.Е. Экстракция борной кислоты изоамиловым спиртом из магнийсодержа-щих водных растворов // Журнал неорганической химии. 1967. Т. 12, № 7. С. 1930–1936.
Боровик Г.Р. Экстракция бора из хлормагниевых растворов спиртами // Известия СО АН СССР. Серия химическая. 1966. № 3, вып. 1. С. 142–143.
Курсина М.М., Шварц Е.М. Распределение борной кислоты в системе полиэтиленгликоль-1500 – Na2CO3 – H2O при 25ºС // Известия АН Латвийской ССР. Серия химическая. 1988. № 5. С. 547–551.
Курсина М.М., Шварц Е.М. Взаимная растворимость и фазовые равновесия в системе MgSO4 – полиэтиленгликоль-1000 – H2O при 25ºС и распределение борной кислоты в области расслоения // Известия АН Латвийской ССР. Серия химическая. 1988. № 6. С. 654–658.
Курсина М.М., Шварц Е.М. Растворимость и фазовые равновесия в системе FeSO4 – поли-этиленгликоль-1500 – H2O и FeSO4 – H3BO3 – полиэтиленгликоль-1500 – H2O при 25ºС // Изве-стия АН Латв. ССР. Сер. химическая. 1990. № 2. С. 181–185.
Zohdi N., Mahdavi F., Abdullah L.C., Choong T.S. Removal of boron from aqueous solution usingmagnetic carbon nano-tube improved with tartaric acid // Journal of Environmental Health Scienc-es and Engineering. 2014, V. 12, № 3. P. 1–12.
Ozturk N., Kavak D. Boron Removal from Aqueous Solutions by Adsorption on Waste Sepio-lite and Activated Waste Sepiolite Using Full Factorial Design // Adsorption. 2004. V. 10, № 3. P. 245–257.
Harada A., Takagi T., Kataoka S., Yamamoto T., Endo A. Boron adsorption mechanism on polyvinyl alcohol // Adsorption. 2011. V. 17, № 1. P. 171–178.
Demey H., Vincent T., Ruiz M., Sastre A.M., Guibal E. Development of a new chi-tosan/Ni(OH)2-based sorbent for boron removal // Chemical Engineering Journal. 2014. V. 244. P. 576–586.
Zelmanov G., Semiat R. Boron removal from water and its recovery using iron (Fe3+) oxide / hydroxide-based nanoperticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsor-bent // Desalination. 2014. V. 333. P. 107–117.
Nishihama S., Sumiyoshi Y., Ookubo T., Yoshizuka K. Adsorption of boron using glucamine-based chelate adsorbents // Desalination. 2013. V. 310. P. 81–86.
Arya S.S., Kaimal A.M., Chib M., Sonawane S.K., Show P.L. Novel, energy efficient and green cloud point extraction: technology and applications in food processing //Journal of Food Science and Technology. 2019. V. 56, №. 2. P. 524–534.
Noorashikin M.D.S. Sohaimi N.M., Suda N., Aziz H.Z., Zaini S.R.M., Kandasamy S., Suresh K. The application of cloud point extraction in environmental analysis // Journal of Sustainability Science and Management. 2017. V. 12. P. 79–95.
Yamini Y., Feizi N., Moradi M. Surfactant-Based Extraction Systems // Liquid-Phase Extrac-tion / Poole C.F., editor. Elsevier, 2020. P. 209–239.
Немодрук А.А., Коралова З.А. Аналитическая химия бора. М.: Наука, 1964. 284 с.
Шванцербах Г., Флашка П. Комплексонометрическое титрование. М.: Химия, 1970. 360 с.
Елохов А.М., Кудряшова О.С., Леснов А.Е. Закономерности высаливания анионного ок-сиэтилированного поверхностно-активного вещества калий бис(алкилполиоксиэтилен)фосфата неорганическими солями // Журнал неорганической химии. 2017. Т. 62, №9. С. 1274–1280.
Станкова А.В., Елохов А.М., Кудряшова О.С. Высаливающая способность неорганиче-ских солей в растворах оксиэтилированных нонилфенолов // Журнал физической химии. 2018, Т. 92, № 7. С. 1145–1150.
Елохов А.М., Кудряшова О.С., Леснов А.Е. Возможность использования систем соль маг-ния – моноалкилполиэтиленгликоль – вода в мицеллярной экстракции // Журнал неорганической химии. 2016. Т. 61. № 2. С. 256–262.
Денисова С.А., Леснов А.Е., Кудряшова О.С., Некрасова В.В., Останина Н.Н., Бортник К.А. Применение расслаивающейся системы вода – оксифос Б – сульфат магния для экстракции органических красителей и их комплексов с ионами металлов // Вестник Пермского университета. Серия: Химия. 2015. № 1 (17). С. 23–29.
Елохов А.М., Кудряшова О.С. Фазовые равновесия в системах вода – хлорид магния – ПАВ // Современные проблемы науки и образования. № 5. 2012. URL: https://www.science-education.ru/ ru/article/view?id=7278 (Дата обращения: 11.02.2021).
Виноградов Е.Е., Яшкичев В.И. Влияние взаимной ориентации молекул воды и неэлек-тролита на высаливание из водных растворов // Журнал структурной химии. 1966. Т. 7, № 1. С. 103–105.
Елохов А.М., Кудряшова О.С., Леснов А.Е. Возможность использования поверхностно-активных веществ для экстракции борной кислоты // Журнал неорганической химии. 2015. Т. 60, № 5. С. 698–700.
References
Pozin, M.E. (1961), Tekhnologiya mineral'nykh soley [Mineral salt technology], Goskhimizdat, Leningrad. (In Russian).
Vinogradov, E.E. and Azarova, L.A. (1967), Ekstraktsiya bornoy kisloty organicheskimi rastvoritelyami [Extraction of boric acid with organic solvents], Zhurnal neorganicheskoy khimii, vol. 13, no. 6, pp. 1624–1627. (In Russian).
Tanasheva, M.R., Beremzhanov, B.A., Tsygankova, I.I. and Kazymbetova, M.S. (1987), Fazovoye ravnovesiye v sistemakh H3BO3 – voda – spirty [Phase equilibrium in systems H3BO3 wa-ter – alcohols], Zhurnal neorganicheskoy khimii, vol. 32, no. 5, pp. 992–995. (In Russian).
Vinogradov, E.E. (1967), Ekstraktsiya bornoy kisloty izoamilovym spirtom iz mag-niysoderzhashchikh vodnykh rastvorov [Extraction of boric acid with isoamyl alcohol from magnesi-um-containing aqueous solutions], Zhurnal neorganicheskoy khimii, vol. 12., no. 7, pp. 1930–1936. (In Russian).
Borovik, G.R. (1966), [Extraction of boron from chlorine-magnesium solutions with alco-hols], Izvestiya SO AN SSSR. Seriya khimicheskaya, no. 3, is. 1, pp. 142–143. (In Russian).
Kursina, M.M. and Shwartz, E.M. (1988), Raspredeleniye bornoy kisloty v sisteme po-lietilenglikol-1500 – Na2CO3 – H2O pri 25ºC [Distribution of boric acid in the polyethylene glycol-1500 Na2CO3 H2O system at 25°C], Izvestiya AN Latviyskoy SSR. Seriya khimicheskaya, no. 5, pp. 547–551. (In Russian).
Kursina, M.M. and Shwartz, E.M. (1988), Vzaimnaya rastvorimost' i fazovyye ravnovesiya v sisteme MgSO4 – polietilenglikol-1000 – H2O pri 25ºS i raspredeleniye bornoy kisloty v oblasti rassloyeniya [Mutual solubility and phase equilibria in the MgSO4 polyethylene glycol-1000 H2O system at 25°C and the distribution of boric acid in the stratification area], Izvestiya AN Latviyskoy SSR. Seriya khimicheskaya, no. 6, pp. 654–658. (In Russian).
Kursina, M.M. and Shwartz, E.M. (1990), [Solubility and phase equilibria in the system FeSO4 polyethylene glycol-1500 H2O and FeSO4 – H3BO3 polyethylene glycol-1500 – H2O at 25°C, Izvestiya AN Latviyskoy SSR. Seriya khimicheskaya, no. 2, pp. 181–185. (In Russian).
Zohdi, N., Mahdavi, F., Abdullah, L.C. and Choong, T.S. (2014), Removal of Boron from Aqueous Solution Using Magnetic Carbon Nano-tube Improved with Tartaric Acid, Journal of Envi-ronmental Health Sciences and Engineering, vol. 12, no. 3, pp. 1–12.
Ozturk, N. and Kavak, D. (2004), Boron Removal from Aqueous Solutions by Adsorption on Waste Sepiolite and Activated Waste Sepiolite Using Full Factorial Design, Adsorption, vol. 10, no 3, pp. 245–257.
Harada, A., Takagi, T., Kataoka, S., Yamamoto, T. and Endo, A. (2011), Boron adsorption mechanism on polyvinyl alcohol, Adsorption, vol. 17, no 1, pp. 171–178.
Demey, H., Vincent, T., Ruiz, M., Sastre, A.M. and Guibal, E. (2014), Development of a New Chitosan/Ni(OH)2-based Sorbent for Boron Removal, Chemical Engineering Journal, vol. 244, pp. 576–586.
Zelmanov, G. and Semiat, R. (2014), Boron removal from water and its recovery using iron (Fe3+) oxide / hydroxide-based nanoperticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent, Desalination, vol. 333, pp. 107–117.
Nishihama, S., Sumiyoshi, Y., Ookubo, T. and Yoshizuka, K. (2013) Adsorption of boron using glucamine-based chelate adsorbents, Desalination, vol. 310, pp. 81–86.
Arya, S.S., Kaimal, A.M., Chib, M., Sonawane, S.K. and Show, P.L. (2019), Novel, energy efficient and green cloud point extraction: technology and applications in food processing, Journal of Food Science and Technology, vol. 56, no. 2, pp. 524–534.
Noorashikin, M.D.S. Sohaimi, N.M., Suda, N., Aziz, H.Z., Zaini, S.R.M., Kandasamy, S. and Suresh, K. (2017), The application of cloud point extraction in environmental analysis, Journal of Sus-tainability Science and Management, vol. 12, pp. 79–95.
Yamini, Y., Feizi, N. and Moradi, M. (2020), Surfactant-Based Extraction Systems, in: Poole, C.F. (ed.) Liquid-Phase Extraction, Elsevier, pp. 209–239.
Nemodruk A.A. and Koralova Z.A. (1964), Analiticheskaya khimiya bora [Boron analytical chemistry], Nauka, Moscow. (In Russian).
Schwanzerbach, G. and Flashka, P. (1970), Kompleksonometricheskoye titrovaniye [Com-plexometric titration], Khimiya, Moscow. (In Russian).
Elokhov, A.M., Lesnov, A.E. and Kudryashova, O.S. (2017), Trends of Salting out of Oxy-ethylated Anionic Surfactant Potassium Bis(alkylpolyoxyethylene) phosphate with Inorganic Salts, Russian Journal of Inorganic Chemistry, vol. 62, no. 9, pp. 1267–1273.
Stankova, A.V., Elokhov, A.M. and Kudryashova, O.S. (2018), Salting-out Ability of Inor-ganic Salts in Solutions of Ethoxylated Nonylphenols, Russian Journal of Physical Chemistry A, vol. 92, no 7, pp. 1386–1391.
Elokhov, A.M., Kudryashova, O.S. and Lesnov, A.E. (2016), Potential of Magnesium Salt – Monoalkylpolyethylene Glycol – Water Systems for Use in Micellar Extraction, Russian Journal of In-organic Chemistry, vol. 61, no. 2, pp. 243–249.
Denisova, S.A., Lesnov, A.E., Kudryashova, O.S., Nekrasova, V.V., Ostanina, N.N. and Bortnik, K.A. (2015), Primeneniye rasslaivayushcheysya sistemy voda – oksifos B – sul'fat magniya dlya ekstraktsii organicheskikh krasiteley i ikh kompleksov s ionami metallov [Application of the strat-ified system water oxyphos B magnesium sulfate for the extraction of organic dyes and their com-plexes with metal ions], Bulletin of Perm University. Chemistry, no. 1 (17), pp. 23–29. (In Russian).
Elokhov, A.M. and Kudryashova, O.S. (2012), Fazovyye ravnovesiya v sistemakh voda – khlorid magniya – PAV [Phase equilibria in systems water magnesium chloride – surfactants], Sov-remennyye problemy nauki i obrazovaniya, no. 5. Available from: https://www.science-education.ru/ ru / article / view? Id = 7278 [Accessed 11th February 2021]. (In Russian).
Vinogradov, E.E. and Yashkichev, V.I. (1966), Vliyaniye vzaimnoy oriyentatsii molekul vody i neelektrolita na vysalivaniye iz vodnykh rastvorov [Influence of mutual orientation of water and non-electrolyte molecules on salting out from aqueous solutions], Journal of Structural Chemistry, vol. 7, no. 1, pp. 103–105. (In Russian).
Elokhov, A.M., Lesnov, A.E. and Kudryashova, O.S. (2015), A Possibility of Surfactant Application for Boric Acid Extraction, Russian Journal of Inorganic Chemistry, vol. 60, no. 5, pp. 626–628.