Липидный метаболизм в раннем онтогенезе кур и его генетическая и эпигенетическая регуляция

##plugins.themes.bootstrap3.article.main##

Елена Геннадьевна Чугугнова
Марина Владимировна Позовникова

Аннотация

Липидный метаболизм – сложный процесс, критически важный для развития организма. В раннем онтогенезе кур, начиная с инкубационного периода и продолжаясь в неонатальный период, происходит интенсивное накопление и перераспределение липидов, обеспечивающих энергией и строительным материалом растущий организм. Этот процесс находится под влиянием паратипических факторов и строгим контролем генетических и эпигенетических механизмов. Генетическая регуляция липидного обмена в этот период осуществляется целым каскадом генов. Ключевую роль играют гены, кодирующие ферменты, участвующие в липолизе, липогенезе, транспорте и метаболизме жирных кислот. Транскриптомные исследования, анализирующие экспрессию генов на уровне микроРНК (мРНК), позволяют изучить эти изменения в динамике развития. Однако генетическая информация не является единственным фактором, определяющим липидный метаболизм. Эпигенетические механизмы, такие мРНК играют значительную роль в тонкой настройке экспрессии генов, вовлеченных в жировой обмен. МикроРНК – это короткие некодирующие РНК, которые регулируют экспрессию целевых генов, влияя на стабильность их мРНК и эффективность трансляции. Они могут взаимодействовать с мРНК генов, кодирующих ключевые ферменты липидного обмена, изменяя их активность и, следовательно, влияя на уровень липидов в крови и тканях. В данном обзоре рассмотрены некоторые аспекты липидного обмена, вклад генетических и эпигенетических компонент, вовлеченных в регуляцию липогенеза и адипогенеза в период раннего онтогенеза кур.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Чугугнова, Е. Г., & Позовникова, М. В. (2025). Липидный метаболизм в раннем онтогенезе кур и его генетическая и эпигенетическая регуляция. Вестник Пермского университета. Серия Биология, (2), 204–223. https://doi.org/10.17072/1994-9952-2025-2-204-223
Раздел
Генетика
Биография автора

Марина Владимировна Позовникова, Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных жи-вотных — филиал ФГБНУ «Федеральный исследовательский центр животноводства — ВИЖ имени академика Л.К. Эрнста», пос. Тярлево, Россия

кандидат биологических наук, старший научный сотрудник лаборатории молекулярной генетики

Библиографические ссылки

Бессарабов Б.Ф., Крыканов А.А., Киселев А.Л. Инкубация яиц сельскохозяйственной птицы: учеб. пособие для СПО. СПб.: Лань, 2021. 160 с.

Челнокова М., Сулейманов Ф., Челноков А. Синергетическое воздействие переменной температуры и красного светодиодного освещения во время инкубации на рост, метаболизм куриных эмбрионов и качество суточных цыплят яичного кросса // Развитие агропромышленного комплекса на основе совре-менных научных достижений и цифровых технологий: материалы Всерос.науч.-практ. конф. Великие Луки, 2022. С. 149–152.

Abdalla B.A. et al. Genomic insights into the multiple factors controlling abdominal fat deposition in a chicken model // Front Genet. 2018. Vol. 9. P. 262. DOI: 10.3389/fgene.2018.00262. EDN: SGUUEP.

Agbu P., Carthew R.W. MicroRNA-mediated regulation of glucose and lipid metabolism // Nature reviews Molecular cell biology. 2021. Vol. 22, № 6. P. 425–438. DOI: 10.1038/s41580-021-00354-w. EDN: UJSSMA.

Ailhaud G., Grimaldi P., Negrel R. Cellular and molecular aspects of adipose tissue development // Annual review of nutrition. 1992. Vol. 12, № 1. P. 207–233. DOI: 10.1146/annurev.nu.12.070192.001231.

Bartel D.P. microRNAs: Genomics, Biogenesis, Mechanism, and Function // Cell. 2004. Vol. 116. P. 281–297. DOI: 10.1016/S0092-8674(04)00045-5. EDN: MFRRCB.

Birsoy K., Chen Z., Friedman J. Transcriptional regulation of adipogenesis by KLF4 // Cell metabolism. 2008. Vol. 7, № 4. P. 339–347. DOI: 10.1016/j.cmet.2008.02.001.

Braun E.J., Sweazea K.L. Glucose regulation in birds // Comparative Biochemistry and Physiology. Part B: Biochemistry and Molecular Biology. 2008. Vol. 151, № 1. P. 1–9. DOI: 10.1016/j.cbpb.2008.05.007.

Burley R.W., Evans A.J., Pearson J.A. Molecular aspects of the synthesis and deposition of hens’ egg yolk with special reference to low density lipoprotein // Poultry science. 1993. Vol. 72, № 5. P. 850–855. DOI: 10.3382/ps.0720850.

Burt D.W. Emergence of the chicken as a model organism: implications for agriculture and biology // Poultry science. 2007. Vol. 86, № 7. P. 1460–1471. DOI: 10.1093/ps/86.7.1460. EDN: ESKKDE.

Chen P. et al. Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler // Poultry science. 2014. Vol. 93, № 7. P. 1809–1817. DOI: 10.3382/ps.2013-03816.

Eresheim C. et al. Expression of microsomal triglyceride transfer protein in lipoprotein-synthesizing tis-sues of the developing chicken embryo // Biochimie. 2014. Vol. 101. P. 67–74. DOI: 10.1016/j.biochi.2013.12.020.

Cogburn L.A. et al. Transcriptional profiling of liver during the critical embryo-to-hatchling transition pe-riod in the chicken (Gallus gallus) // BMC genomics. 2018. Vol. 19. P. 1–37. DOI: 10.1186/s12864-018-5080-4.

Cui H. et al. Identification of differentially expressed genes and pathways for intramuscular fat metabo-lism between breast and thigh tissues of chickens // BMC genomics. 2018. Vol. 19. P. 1–9. DOI: 10.1186/s12864-017-4292-3.

Cui H. et al. A selected population study reveals the biochemical mechanism of intramuscular fat depo-sition in chicken meat // Journal of Animal Science and Biotechnology. 2022. Vol. 13, № 1. P. 54. DOI: 10.1186/s40104-022-00705-3.

Dagher R., Massie R., Gentil B.J. MTP deficiency caused by HADHB mutations: Pathophysiology and clinical manifestations // Molecular Genetics and Metabolism. 2021. Vol. 133, № 1. P. 1–7. DOI: 10.1016/j.ymgme.2021.03.010. EDN: GVBWNF.

Đaković N. et al. The loss of adipokine genes in the chicken genome and implications for insulin metabo-lism // Molecular biology and evolution. 2014. Vol. 31, № 10. P. 2637–2646. DOI: 10.1093/molbev/msu208. EDN: URQELL.

Darnell D.K. et al. MicroRNA expression during chick embryo development // Developmental Dynamics. 2006. Vol. 235, № 11. P. 3156–3165. DOI: 10.1002/dvdy.20956.

Dayan J. et al. Incubation Temperature Affects Yolk Utilization through Changes in Expression of Yolk Sac Tissue Functional Genes // Poultry science. 2020. Vol. 99. P. 6128–6138. DOI: 10.1016/j.psj.2020.07.037. EDN: VHRIZP.

De Oliveira J.E., Uni Z., Ferket P.R. Important metabolic pathways in poultry embryos prior to hatch // World's Poultry Science Journal. 2008. Vol. 64, № 4. P. 488–499. DOI: 10.1017/S0043933908000160.

Dridi S. et al. The regulation of stearoyl-CoA desaturase gene expression is tissue specific in chickens // Journal of Endocrinology. 2007. Vol. 192, № 1. P. 229–236. DOI: 10.1677/JOE-06-0070.

Feast M. et al. The effect of temporary reductions in incubation temperature on growth characteristics and lipid utilisation in the chick embryo // The Journal of Anatomy. 1998. Vol. 193, № 3. P. 383–390. DOI: 10.1046/j.1469-7580.1998.19330383.x.

Fu C.Y. et al. Supplementing conjugated linoleic acid in breeder hens diet increased conjugated linoleic acid incorporation in liver and alters hepatic lipid metabolism in chick offspring // British Journal of Nutrition. 2022. Vol. 127, № 10. P. 1443–1454. DOI: 10.1017/S0007114521000763. EDN: ZCRXNO.

Guo L. et al. Comparison of adipose tissue cellularity in chicken lines divergently selected for fatness // Poultry Science. 2011. Vol. 90, № 9. P. 2024–2034. DOI: 10.3382/ps.2010-00863.

Hicks J.A., Tembhurne P., Liu H.C. MicroRNA expression in chicken embryos // Poultry science. 2008. Vol. 87, № 11. P. 2335–2343. DOI: 10.3382/ps.2008-00114.

Hicks J.A., Porter T.E., Liu H.C. Identification of microRNAs controlling hepatic mRNA levels for meta-bolic genes during the metabolic transition from embryonic to posthatch development in the chicken // BMC genomics. 2017. Vol. 18. P. 1–15. DOI: 10.1186/s12864-017-4096-5. EDN: VSRSIK.

Hicks J.A. et al. Delayed feeding alters transcriptional and post-transcriptional regulation of hepatic met-abolic pathways in peri-hatch broiler chicks // Genes. 2019. Vol. 10, № 4. Art. 272. DOI: 10.3390/genes10040272.

Hicks J.A., Liu H.C. Expression Signatures of microRNAs and Their Targeted Pathways in the Adipose Tissue of Chickens during the Transition from Embryonic to Post-Hatch Development // Genes. 2021. Vol. 12, № 2. Art. 196. DOI: 10.3390/genes12020196. EDN: BDYWBB.

Huang H.Y. et al. Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens // Scientific reports. 2015. Vol. 5, № 1. Art. 16132. DOI: 10.1038/srep16132.

Iraqi E. et al. Effect of thermal manipulation on embryonic development, hatching process, and chick quality under heat-stress conditions // Poultry Science. 2024. Vol. 103, № 1. Art. 103257. DOI: 10.1016/j.psj.2023.103257. EDN: BCKCQE.

Jo J. et al. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth // PLoS computational biology. 2009. Vol. 5, № 3. Art. e1000324. DOI: 10.1371/journal.pcbi.1000324.

Kotagama K., McJunkin K. Recent advances in understanding microRNA function and regulation in C. elegans // Seminars in Cell & Developmental Biology. Academic Press. 2024. Vol. 154. P. 4–13. DOI: 10.1016/j.semcdb.2023.03.011. EDN: GBNWFJ.

Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. Vol. 75. P. 843–854.

Li H., Li Z., Liu X. An overall view of the regulation of hepatic lipid metabolism in chicken revealed by new-generation sequencing // Poultry Science. IntechOpen, London, UK. 2017. P. 133–147. DOI: 10.5772/64970.

Li X. et al. A novel candidate gene CLN8 regulates fat deposition in avian // Journal of Animal Science and Biotechnology. 2023. Vol. 14, № 1. Art. 70. DOI: 10.1186/s40104-023-00864-x. EDN: MXIHYQ.

Liao L. et al. Exploring the role of miRNAs in early chicken embryonic development and their signifi-cance // Poultry Science. 2023. Vol. 102, № 12. Art. 103105. DOI: 10.1016/j.psj.2023.103105. EDN: TPKPDP.

Lin X. et al. MicroRNA 33 Potentially Participates in the Development of Goose Fatty Liver via Its Tar-get Gene CROT // Research Square. 2021. 19 February. Preprint (Version 1). DOI: 10.21203/rs.3.rs-210181/v1.

Liu J. et al. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens // PLoS One. 2016. Vol. 11, № 8. Art. e0159722. DOI: 10.1371/journal.pone.0159722.

Liu J. et al. Dynamic transcriptomic analysis of breast muscle development from the embryonic to post-hatching periods in chickens // Frontiers in Genetics. 2020a/b. Vol. 10. Art. 1308. DOI: 10.3389/fgene.2019.01308. EDN: UDSOLP.

Liu R. et al. Uncovering the embryonic development-related proteome and metabolome signatures in breast muscle and intramuscular fat of fast-and slow-growing chickens // BMC genomics. 2017. Vol. 18. P. 1–15. DOI: 10.1186/s12864-017-4150-3. EDN: LLIXBO.

Liu Y. et al. Developmental changes in hepatic lipid metabolism of chicks during the embryonic periods and the first week of posthatch // Poultry Science. 2020a/b. Vol. 99, № 3. P. 1655–1662. DOI: 10.1016/j.psj.2019.11.004. EDN: FYGLFY.

Lu Z. et al. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress // Poultry Science. 2019. Vol. 98, № 9. P. 3695–3704. DOI: 10.3382/ps/pez056.

Luo L., Liu M. Adipose tissue in control of metabolism // Journal of endocrinology. 2016. Vol. 231, № 3. P. R77–R99. DOI: 10.1530/JOE-16-0211.

Mauvoisin D. et al. Role of the PI3-kinase/mTor path way in the regulation of the stearoyl CoA desatu-rase (SCD1) gene expression by insulin in liver. // Journal of cell communication and signaling. 2007. Vol 1. P. 113–125. DOI: 10.1007/s12079-007-0011-1. EDN: LENMIK.

Moran E.T.Jr. Nutrition of the developing embryo and hatchling // Poultry science. 2007. Vol. 86, № 5. P. 1043–1049. DOI: 10.1093/ps/86.5.1043.

Munyaneza J.P. et al. Genome-wide association studies of meat quality traits in chickens: a review // Ko-rean Journal of Agricultural Science. 2022. Vol. 49, № 3. P. 407–420. DOI: 10.7744/kjoas.20220029. EDN: NLLTIU.

Nematbakhsh S. et al. Molecular regulation of lipogenesis, adipogenesis and fat deposition in chicken // Genes. 2021. Vol. 12, № 3. Art. 414. DOI: 10.3390/genes12030414. EDN: NOOUTB.

Nimpf J., Radosavljevic M., Schneider W.J. Specific postendocytic proteolysis of apolipoprotein B in oo-cytes does not abolish receptor recognition // Proceedings of the National Academy of Sciences. 1989. Vol. 86, № 3. P. 906–910. DOI: 10.1073/pnas.86.3.906.

Noble R.C., Cocchi M. Lipid metabolism and the neonatal chicken // Progress in lipid research. 1990. Vol. 29, № 2. P. 107-140.

Novák J. et al. Mechanistic role of microRNAs in coupling lipid metabolism and atherosclerosis // mi-croRNA: Basic Science: From Molecular Biology to Clinical Practice. 2015. P. 79–100. DOI: 10.1007/978-3-319-22380-3_5. EDN: WRRTTP.

Pan R. et al. Weighted single-step GWAS identified candidate genes associated with carcass traits in a Chinese yellow-feathered chicken population // Poultry Science. 2024. Vol. 103, № 2. Art. 103341. DOI: 10.1016/j.psj.2023.103341. EDN: XMNCNX.

Pasquinelli A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regu-latory RNA // Nature. 2000. Vol. 408. P. 86–89. DOI: 10.1038/35040556.

Peebles E.D. et al. Effects of incubational humidity and hen age on embryo composition in broiler hatch-ing eggs from young breeders // Poultry Science. 2001a/b. Vol. 80, № 9. P. 1299–1304. DOI: 10.1093/ps/80.9.1299.

Peebles E.D. et al. Breeder age influences embryogenesis in broiler hatching eggs // Poultry Science. 2001a/b. Vol. 80, № 3. P. 272–277. DOI: 10.1093/ps/80.3.272.

Peng M. et al. Proteomics reveals changes in hepatic proteins during chicken embryonic development: an alternative model to study human obesity // BMC genomics. 2018. Vol. 19. P. 1–15. DOI: 10.1186/s12864-017-4427-6. EDN: PAOKEZ.

Petit A. et al. Ontogeny of hepatic metabolism in two broiler lines divergently selected for the ultimate pH of the Pectoralis major muscle // BMC genomics. 2024. Vol. 25, № 1. Art. 438. DOI: 10.1186/s12864-024-10323-0. EDN: TXTBHY.

Pitel F. et al. Is there a leptin gene in the chicken genome? Lessons from phylogenetics, bioinformatics and genomics // General and comparative endocrinology. 2010. Vol. 167, № 1. P. 1–5. DOI: 10.1016/j.ygcen.2009.10.006.

Proszkowiec-Weglarz M., Richards M.P. Expression and activity of the 5′-adenosine monophosphate-activated protein kinase pathway in selected tissues during chicken embryonic development // Poultry science. 2009. Vol. 88, № 1. P. 159–178. DOI: 10.3382/ps.2008-00262.

Qiu F. et al. Lower expression of SLC27A1 enhances intramuscular fat deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A // Frontiers in physiology. 2017. Vol. 8. Art. 449. DOI: 10.3389/fphys.2017.00449.

Schneider W.J. Low density lipoprotein receptor relatives in chicken ovarian follicle and oocyte devel-opment // Cytogenetic and Genome Research. 2007. Vol. 117, № 1–4. P. 248–255. DOI: 10.1159/000103186.

Shao F. et al. Expression of miR-33 from an SREBP2 intron inhibits the expression of the fatty acid oxi-dation-regulatory genes CROT and HADHB in chicken liver // British poultry science. 2019. Vol. 60, № 2. P. 115–124. DOI: 10.1080/00071668.2018.1564242.

Shen N. et al. Liver proteomics analysis reveals the differentiation of lipid mechanism and antioxidant enzyme activity during chicken embryonic development // International Journal of Biological Macromolecules. 2023. № 253. Art. 127417. DOI: 10.1016/j.ijbiomac.2023.127417. EDN: PTIMVY.

Simon J. Chicken as a useful species for the comprehension of insulin action // Critical Reviews in Poul-try Biology. 1989. Vol. 2. P. 121–148.

Speake B.K., Murray A.M., Noble R.C. Transport and transformations of yolk lipids during development of the avian embryo // Progress in lipid research. 1998. Vol. 37, № 1. P. 1–32. DOI: 10.1016/S0163-7827(97)00012-X. EDN: XLLYFF.

Strittmatter P. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase // Pro-ceedings of the National Academy of Sciences. 1974. Vol. 71, № 11. P. 4565–4569. DOI: 10.1073/pnas.71.11.4565.

Sweazea K.L. Revisiting glucose regulation in birds–a negative model of diabetes complications // Com-parative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2022. Vol. 262. Art. 110778. DOI: 10.1016/j.cbpb.2022.110778. EDN: FYJGJM.

Tarugi P. et al. Absence of apolipoprotein B-48 in the chick, Gallus domesticus // Journal of Lipid Re-search. 1990. Vol. 31, № 3. P. 417–427. DOI: 10.1016/S0022-2275(20)43164-5.

Tian J. et al. A single nucleotide polymorphism of chicken acetyl-CoA carboxylase A gene associated with fatness traits // Animal Biotechnology. 2009. Vol. 21, № 1. P. 42–50. DOI: 10.1080/10495390903347009.

Tian W. et al. Chromatin interaction responds to breast muscle development and intramuscular fat dep-osition between Chinese indigenous chicken and fast-growing broiler // Frontiers in cell and developmental biol-ogy. 2021. Vol. 9. Art. 782268. DOI: 10.3389/fcell.2021.782268. EDN: YPEGXN.

Tona K. et al. Chicken incubation conditions: role in embryo development, physiology and adaptation to the post-hatch environment // Frontiers in Physiology. 2022. Vol. 13. Art. 895854. DOI: 10.3389/fphys.2022.895854.

van der Wagt I. et al. A review on yolk sac utilization in poultry // Poultry Science. 2020. Vol. 99, № 4. P. 2162–2175. DOI: 10.1016/j.psj.2019.11.041. EDN: YQXRUE.

Wang G. et al. Factors affecting adipose tissue development in chickens: A review // Poultry science. 2017. Vol. 96, № 10. P. 3687–3699. DOI: 10.3382/ps/pex184.

Wang P. et al. Activation of skeletal ChREBP-mediated de novo lipogenesis increases intramuscular fat content in chickens // Animal Nutrition. 2024. Vol. 18. P. 107–118. DOI: 10.1016/j.aninu.2024.04.006. EDN: BMLWNS.

Wei W. et al. Identification of central regulators related to abdominal fat deposition in chickens based on weighted gene co-expression network analysis // Poultry Science. 2024. Vol. 103, № 3. Art. 103436. DOI: 10.1016/j.psj.2024.103436.

Xing S. et al. RNA-seq analysis reveals hub genes involved in chicken intramuscular fat and abdominal fat deposition during development // Frontiers in Genetics. 2020. Vol. 11. Art. 1009. DOI: 10.3389/fgene.2020.01009. EDN: USUWEE.

Xing S. et al. Time course transcriptomic study reveals the gene regulation during liver development and the correlation with abdominal fat weight in chicken // Frontiers in Genetics. 2021. Vol. 12. Art. 723519. DOI: 10.3389/fgene.2021.723519. EDN: HSFTGH.

Yadgary L. et al. Yolk sac nutrient composition and fat uptake in late-term embryos in eggs from young and old broiler breeder hens // Poultry Science. 2010. Vol. 89, № 11. P. 2441–2452. DOI: 10.3382/ps.2010-00681.

Zhang H. et al. Haplotype-based genome-wide association studies for carcass and growth traits in chick-en // Poultry science. 2020. Vol. 99, № 5. P. 2349–2361. DOI: 10.1016/j.psj.2020.01.009. EDN: MTLHYM.

Zhang X. et al. Characterization of the chicken melanocortin 5 receptor and its potential role in regulat-ing hepatic glucolipid metabolism // Frontiers in Physiology. 2022. Vol. 13. Art. 917712. DOI: 10.3389/fphys.2022.917712. EDN: CRJQVM.

Zhu J. et al. RNA sequencing identifies key genes involved in intramuscular fat deposition in chickens at different developmental stages // BMC genomics. 2024. Vol. 25, № 1. Art. 219. DOI: 10.1186/s12864-023-09819-y. EDN: IOHCIA.