ROLE OF BIOGENE POLYAMINES IN MYCOBACTERIAL SLIDING MOTILITY

Main Article Content

Лариса/Larisa Юрьевна/Yurievna Нестерова/Nesterova
Иван/Ivan Вадимович/Vadimovich Цыганов/Tsyganov
Александр/Aleksander Георгиевич/Georgievich Ткаченко/Tkachenko

Abstract

Effects of biogene polyamines (putrescine, spermidine, spermine, cadaverine) on sliding motility of Mycobacterium smegmatis were studied here. We showed that polyamines had no toxic effects on M. smegmatis cells grown in a liquid medium. However, spermidine or spermine supplemented to nutritional medium cause statistically significant lowering in a size of sliding colonies. Furthermore, this polyamine effect is directly dependent on polyamine concentration. In spite of high resistance level of microorganisms forming sliding colony to quinolone levofloxacin, significant differences in the levels of antibiotic susceptibility between cells localized in different zones of colony were not observed. Sublethal antibiotic concentration, while it is added to medium, decreases the size of sliding colony. Medium supplementation with cadaverine under these conditions promotes an increase in colony diameter, however, spermine or spermidine have an inverse effect.

Article Details

How to Cite
Нестерова/Nesterova Л. Ю., Цыганов/Tsyganov И. В., & Ткаченко/Tkachenko А. Г. (2018). ROLE OF BIOGENE POLYAMINES IN MYCOBACTERIAL SLIDING MOTILITY. Bulletin of Perm University. Biology, (3), 304–310. Retrieved from https://press.psu.ru/index.php/bio/article/view/1868
Section
Микробиология
Author Biographies

Лариса/Larisa Юрьевна/Yurievna Нестерова/Nesterova, Institute of Ecology and Genetics of Microorganism UB RAS; Perm State University

Candidate of biology, senior scientist of the laboratory of microorganisms adaptation;Associate professor of the Department of physiology of plans and microorganisms

Иван/Ivan Вадимович/Vadimovich Цыганов/Tsyganov, Perm State University; Institute of Ecology and Genetics of Microorganism UB RAS

Student;Laboratory assistant of laboratory of microorganisms adaptation

Александр/Aleksander Георгиевич/Georgievich Ткаченко/Tkachenko, Institute of Ecology and Genetics of Microorganism UB RAS; Perm State University

Doctor of Medicine, head of the laboratory of microorganisms adaptation;Professor of the Department of Microbiology and immunology

References

Нестерова Л.Ю., Караваева Е.А., Ткаченко А.Г. Полиамины как регуляторы биоплёнкообразо-вания природных изолятов Escherichia coli с разной степенью устойчивости к фторхиноло-нам // Вестник Пермского университета. Сер. Биология. 2011. Вып. 2. С. 32-37.

Drlica K. et al. Quinolone-Mediated Bacterial Death // Antimicrobial Agents and Chemotherapy. 2008. Vol. 52. P. 385-392.

Harshey R.M., Partridge J.D. Shelter in a swarm // Journal of molecular biology. 2015. Vol. 427, № 23. P. 3683-3694.

Henrichsen J. Bacterial surface translocation: a survey and a classification // Bacteriological reviews. 1972. Vol. 36, № 4. P. 478.

Igarashi K., Kashiwagi K. Polyamine transport in bacteria and yeast // Biochemical Journal. 1999. Vol. 344, № 3. P. 633-642.

Igarashi K. et al. Polyamines in renal failure // Amino acids. 2006. Vol. 31, № 4. P. 477-483.

Jánne J. et al. Polyamines and polyamine-metabolizing enzyme activities in human semen // Clinica Chimica Acta. 1973. Vol. 48, № 4. P. 393-401.

Martínez A., Torello S., Kolter R. Sliding motility in mycobacteria // Journal of bacteriology. 1999. Vol. 181, № 23. P. 7331-7338.

Murray T.S., Kazmierczak B.I. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella // Journal of bacteriology. 2008. Vol. 190, № 8. P. 2700-2708.

Pegg A. E., McCann P. P. Polyamine metabolism and function // American Journal of Physiology-Cell Physiology. 1982. Vol. 243, № 5. P. 212-221.

Samartzidou H., Delcour A. H. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability // Journal of bacteriology. 1999. Vol. 181, № 3. P. 791-798.

Tabor C. W., Tabor H. Polyamines in microorganisms // Microbiological reviews. 1985. Vol. 49, № 1. P. 81.

Tkachenko A. G. et al. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics // Research in microbiology. 2012. Vol. 163, № 2. P. 83-91.

Tkachenko A.G., Nesterova L. Y., Pshenichnov M. The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli // Archives of microbiology. 2001. Vol. 176, № 12. P. 155-157.

Tkachenko A. G., Nesterova L. Y. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli // Biochemistry (Moscow). 2003. Vol. 68, № 8. P. 850-856.

Yohannes, E. Polyamine stress at high pH in Escherichia coli K-12 // BMC Microbiology. 2005. Vol. 59, № 5. P. 59-71.

References

Drlica K., Malik M. Kerns R.L., Zhao X. Quinolone-Mediated Bacterial Death Antimicrobial Agents and Chemotherapy. 2008. V. 52, pp. 385-392.

Harshey R.M., Partridge J.D. Shelter in a swarm. Journal of molecular biology. V. 427, N 23 (2015): pp. 3683-3694.

Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriological reviews. V. 36, N 4. (1972): p. 478.

Igarashi K., Kashiwagi K. Polyamine transport in bacteria and yeast. Biochemical Journal. V. 344, N 3. (1999): pp. 633-642.

Igarashi K. et al. Polyamines in renal failure. Amino acids. V. 31, N 4. (2006): pp. 477-483.

Jänne J. et al. Polyamines and polyamine-metabolizing enzyme activities in human semen. Clinica Chimica Acta. V. 48, N 4. (1973): pp. 393-401.

Martinez A., Torello S., Kolter R. Sliding motility in mycobacteria. Journal of bacteriology. V. 181, N 23 (1999): pp. 7331-7338.

Murray T.S., Kazmierczak B.I. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. Journal of bacteriology. V. 190, N 8 (2008): pp. 2700-2708.

Nesterova L.Yu., Karavaeva E.A., Tkachenko A.G. [Polyamines as regulators of biofilm formation of natural isolates of Escherichia coli with different degrees of resistance to fluoroquinolones]. Vest-nik Permskogo Universiteta. Ser. Biologija V. 2 (2011): pp. 32-37. (In Russ.).

Pegg A.E., McCann P.P. Polyamine metabolism and function. American Journal of Physiology-Cell Physiology. V. 243, N 5. (1982): pp. 212-221.

Samartzidou H., Delcour A.H. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. Journal of bacteriology. V. 181, N 3 (1999): pp. 791-798.

Tabor C.W., Tabor H. Polyamines in microorganisms. Microbiological reviews. V. 49, N 1. (1985): pp. 81.

Tkachenko A.G. et al. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Research in microbiology. V. 163, N 2. (2012): pp. 83-91.

Tkachenko A.G., Nesterova L.Y., Pshenichnov M. The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Archives of microbiology. V. 176, N 1-2. (2001): pp. 155-157.

Tkachenko A.G., Nesterova L. Y. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry (Moscow). V. 68, N 8. (2003): pp. 850-856.

Yohannes E. Polyamine stress at high pH in Escherichia coli K-12. BMC Microbiology. V. 59, N 5. (2005): pp. 59-71.

Most read articles by the same author(s)