CHANGING OF EXPRESSION OF ANTIOXIDANT GENES IN ESCHERICHIA COLI DURING GROWTH ON VARIOUS SOURCES OF CARBON AND ENERGY

Main Article Content

Михаил Александрович Петерс
Надежда Геннадьевна Музыка
Алексей Валерьевич Тюленев
Олег Николаевич Октябрьский
Галина Васильевна Смирнова

Abstract

In bacteria various stresses are accompanied by an increased production of reactive oxygen species (ROS). Consequently, the level of expression of antioxidant genes may play an important role in bacterial adaptation to changing environments. In this paper, using aerobically growing cultures of Escherichia coli, we have evaluated the effect of carbon and energy sources on expression of antioxidant genes katG, katE and sodA, coding, respectively, catalases HPI, HPII and Mn-superoxide dismutase. When grown on succinate, malate, а-ketoglutarate or acetate as a sole source of carbon and energy, katG gene expression was, respectively, 1.5, 1.6, 1.7 and 2.3 times higher than during growth on glucose. Expression of the katE gene during growth on succinate, malate, а-ketoglutarate or acetate was higher than that during growth on glucose, in 1.8, 1.95, 1.5 and 2.1 times, respectively. Expression of the sodA gene decreased during the periodic growth on glucose, succinate and malate. Under growth on acetate, sodA expression maintained constant and 1.2 - 1.8 times exceeded the level on glucose. The rate of superoxide production and the level of H2O2 in the medium decreased under conditions, which promoted enhanced expression of antioxidant genes.

Article Details

How to Cite
Петерс, М. А., Музыка, Н. Г., Тюленев, А. В., Октябрьский, О. Н., & Смирнова, Г. В. (2018). CHANGING OF EXPRESSION OF ANTIOXIDANT GENES IN ESCHERICHIA COLI DURING GROWTH ON VARIOUS SOURCES OF CARBON AND ENERGY. Bulletin of Perm University. Biology, (4), 356–361. Retrieved from https://press.psu.ru/index.php/bio/article/view/1773
Section
Микробиология
Author Biographies

Михаил Александрович Петерс, Institute of Ecology and Genetics of Microorganism UB RAS

Graduate student

Надежда Геннадьевна Музыка, Institute of Ecology and Genetics of Microorganism UB RAS

Candidate of biology, senior researcher of laboratory of physiology and genetics of microorganisms

Алексей Валерьевич Тюленев, Institute of Ecology and Genetics of Microorganism UB RAS

Engineer of laboratory of physiology and genetics of microorganisms

Олег Николаевич Октябрьский, Institute of Ecology and Genetics of Microorganism UB RAS; Perm National Research Polytechnic University

Professor, director of laboratory of physiology and genetics of microorganisms;Professor of the Department of Chemistry and Biotechnology

Галина Васильевна Смирнова, Institute of Ecology and Genetics of Microorganism UB RAS

Leading researcher of laboratory of physiology and genetics of microorganisms

References

Anjem A., Imlay J.A. Mononuclear iron enzymes are primary targets of hydrogen peroxide stress // J. Biol. Chem. 2012. Vol. 287. P. 15544-15556.

Compan I., Touati D. Interaction of six global transcriptional regulators in expression of manganese superoxide dismutase in Escherichia coli K12 // J. Bacteriol. 1993. Vol. 175. P. 1687-1696.

Gonzalez-Flecha В., Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli II J. Biol. Chem. 1995. Vol. 270. P. 13681-13687.

Gort A.S., Ferber D.M., Imlay J.A. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli II Mol. Microbiol. 1999. Vol. 32. P. 179-191.

Gu M., Imlay J.A. Superoxide poisons mononuclear iron enzymes by causing mismetallation // Mol. Microbiol. 2013. Vol. 89. P. 123-134.

Hengge-Arronis R. Signal transduction and regulatory mechanisms involved in control of the gs (RpoS) subunit of RNA polymerase // Microbiol. Mol. Biol. Rev. 2002. Vol. 66. P. 373-395.

Ihssen J., Egli T. Specific growth rate and not cell density controls the general stress response in Escherichia coli И Microbiology. 2004. Vol. 150. P. 1637-1648.

Imlay J.A. Cellular defenses against superoxide and hydrogen peroxide // Annu. Rev. Biochem. 2008. Vol. 77. P. 755-776.

Imlay J.A., Fridovich I. Assay of metabolic superoxide production in Escherichia coli II J. Biol. Chem. 1991. Vol. 266. P. 6957-6965.

Ivanova A. et al. Role of rpoS (katl7) in oxyR-independent regulation of hydroperoxidase I in Escherichia coli II Mol. Microbiol. 1994. Vol. 12. P. 571-578.

Korshunov S., Imlay J.A. Detection and quantification of superoxide formed within the periplasm of Escherichia coli // J. Bacteriol. 2006. Vol. 188. P. 6326-6334.

Messner K.R., Imlay J.A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli II J. Biol. Chem. 1999. Vol. 274. P. 10119-10128.

Miller J.H. Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory Press. 1972.

Seaver L.C., Imlay J.A. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli II J. Bacteriol. 2001. Vol. 183. P. 7173-7181.

Skulachev V. Uncoupling: new approaches to an old problem of bioenergetics // Biochim. Biophys. Acta. 1998. Vol. 1363. P. 100-124.

Storz G., Taraglia L.A., Ames B.N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation // Science. 1990. Vol. 248. P. 194-198.

Tao K. et al. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins // Mol. Gen. Genet. 1989. Vol. 218. P. 371-376.

_________________________________________________________

Anjem A., Imlay J.A. Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J. Biol. Chem. V. 287 (2012): pp. 15544-15556.

Compan I., Touati D. Interaction of six global transcriptional regulators in expression of manganese superoxide dismutase in Escherichia coli K12. J. Bacteriol. V. 175 (1993): pp. 1687-1696.

Gonzalez-Flecha B., Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J. Biol. Chem. V. 270 (1995): pp. 13681-13687.

Gort A.S., Ferber D.M., Imlay J.A. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol. Microbiol. V. (32): (1999): pp. 179-191.

Gu M., Imlay J.A. Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol. Microbiol. V. 89 (2013): pp. 123-134.

Hengge-Arronis R. Signal transduction and regulatory mechanisms involved in control of the os (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. V. 66 (2002): pp. 373-395.

Ihssen J., Egli T. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology V. 150 (2004): pp. 1637-1648.

Imlay J.A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. V. 77 (2008): pp. 755-776.

Imlay J.A., Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. V. 266 (1991): pp. 6957-6965.

Ivanava A., Miller C., Glinsky G., Eisenstark A. Role of rpoS (katF) in oxyR-independent regulation of hydroperoxidase I in Escherichia coli. Mol. Microbiol. V. 12 (1994): pp. 571-578.

Korshunov S., Imlay J.A. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. V. 188 (2006): pp. 6326-6334.

Messner K.R., Imlay J.A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. V. 274 (1999): pp. 10119-10128.

Miller J.H. Experiments in molecular genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. 1972.

Seaver L.C., Imlay J.A. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. V. 183 (2001): pp. 7173-7181.

Skulachev V. Uncoupling: new approaches to an old problem of bioenergetics. Biochim. Biophys. Acta V. 1363 (1998): pp. 100-124.

Storz G., Taraglia L.A., Ames B.N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science V. 248 (1990): pp. 198-194.

Tao K., Makino K., Yonei S., Nacata A., Shinagawa H. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins. Mol. Gen. Genet. V. 218 (1989): pp. 371-376.