Штамм-деструктор фталатов Stutzerimonas sp. SJ1gcor из почвы береговой зоны техногенного галощелочного водоема

##plugins.themes.bootstrap3.article.main##

Юлия Игоревна Нечаева
Анна Александровна Пьянкова
Елена Генриховна Плотникова

Аннотация

Галощелочные среды представляют особый интерес для исследований, поскольку характеризуются уникальным разнообразием экстремофильных микроорганизмов, которые приспособлены к условиям высокой солености и щелочности среды. Среди экстремофильных микроорганизмов особенного внимания заслуживают биодеструкторы различных ароматических и алифатических соединений, оказывающих негативное воздействие на экосистемы и здоровье человека. Из почвы береговой зоны техногенного галощелочного водоема, расположенного на территории Верхнекамского месторождения калийно-магниевых солей (г. Березники, Пермский край), выделен штамм SJ1gcor, который идентифицирован как представитель рода Stutzerimonas. Анализ гена 16S рРНК данного штамма показал наибольший уровень сходства (99.69%) с гомологичным геном Stutzerimonas zhaodongensis NEAU-ST5-21T. Штамм способен к росту в присутствии фталатов в качестве единственного источника углерода и энергии: дибутилфталата (ДБФ) и диметилфталата (ДМФ), а также возможных продуктов биодеструкции этих соединений: орто-фталевой (ОФК), бензойной кислот (БК) и бутанола. Выделенный штамм может развиваться на ДБФ в качестве субстрата с содержанием в среде культивирования до 70 г/л NaCl. Наиболее высокий показатель удельной скорости роста штамма SJ1gcor выявлен при культивировании клеток в среде с содержанием 30 г/л NaCl, а максимальная оптическая плотность зафиксирована на среде с содержанием 70 г/л NaCl. В геноме штамма выявлен ген benA, кодирущий α-субъединицу бензоат 1,2-диоксигеназы – ключевого фермента разложения БК. На основании полученных данных для штамма SJ1gcor предложены 2 альтернативных пути разложения ДБФ. Штамм Stutzerimonas sp. SJ1gcor представляет интерес для дальнейших исследований и перспективен для использования в биотехнологических целях.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Нечаева, Ю. И., Пьянкова, А. А., & Плотникова, Е. Г. (2025). Штамм-деструктор фталатов Stutzerimonas sp. SJ1gcor из почвы береговой зоны техногенного галощелочного водоема. Вестник Пермского университета. Серия Биология, (4), 415–423. https://doi.org/10.17072/1994-9952-2025-4-415-423
Раздел
Микробиология

Библиографические ссылки

Белкин П.А. Химический состав родникового стока в районе складирования отходов разработки и обогащения калийных солей // Вестник Пермского университета. Геология. 2020. Т. 19(3). С. 232−240. DOI: 10.17072/psu.geol.19.3.232. EDN: DMUFJO.

Егорова Д.О. и др. Деструкция ароматических углеводородов штаммом Rhodococcus wratislaviensis KT112-7, выделенным из отходов соледобывающего предприятия // Прикладная биохимия и микробио-логия. 2013. Т. 49(3). С. 267−278. DOI: 10.7868/S0555109913030070. EDN: PXPZZB.

Методы общей бактериологии: в 3 т. / под ред. Ф. Герхардта и др. М.: Мир, 1983. Т. 1–3.

Нетрусов А.И. Практикум по микробиологии. М.: Академия, 2005. 608 с.

Ausbel F.M. Short Protocols in Molecular Biology. 3rd ed. N.Y.: John Wiley & Sons, 1995. 450 p.

Baggi G. et al. Co-metabolism of di-and trichlorobenzoates in a 2-chlorobenzoate-degrading bacterial cul-ture: Effect of the position and number of halo-substituents // International Biodeterioration & Biodegradation. 2008. Vol. 62(1). P. 57−64. DOI: 10.1016/j.ibiod.2007.12.002.

Belkin P. et al. Sediment microbial communities of a technogenic saline-alkaline reservoir // Heliyon. 2024. Vol. 10(13). Art. e33640. DOI: 10.1016/j.heliyon.2024.e33640.

Benjamin S. et al. A monograph on the remediation of hazardous phthalates // Journal of Hazardous Ma-terials. 2015. Vol. 298. P. 58−72. DOI: 10.1016/j.jhazmat.2015.05.004.

Chen F. et al. High-efficiency degradation of phthalic acid esters (PAEs) by Pseudarthrobacter defluvii E5: performance, degradative pathway, and key genes // Science of the Total Environment. 2021. Vol. 794. Art. 148719. DOI: 10.1016/j.scitotenv.2021.148719.

Hu R. et al. Bacteria-driven phthalic acid ester biodegradation: current status and emerging opportunities // Environment International. 2021. Vol. 154. Art. 106560. DOI: 10.1016/j.envint.2021.106560.

Kaur R. et al. Biodegradation of phthalates and metabolic pathways: an overview // Environmental Sus-tainability. 2023. Vol. 6. P. 303–318. DOI: 10.1007/s42398-023-00268-7.

Khodaei K. et al. BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomo-nas sp. BTEX-30) // International Biodeterioration & Biodegradation. 2017. Vol. 116. P. 234−242. DOI: 10.1016/j.ibiod.2016.11.001.

Khurshid S. et al. Di-butyl phthalates (DBP) in the environment: health risks and advances in treatment technologies // Environ. Geochem. Health. 2025. Vol. 47. Art. 371. DOI: 10.1007/s10653-025-02707-2.

Lakshmikandan M. et al. Efficient biodegradation of elevated di-n-butyl phthalate levels by microalga Coelastrella terrestris MLUN1 and its post-treatment potential // Journal of Water Process Engineering. 2025. Vol. 73. Art. 107694. DOI: 10.1016/j.jwpe.2025.107694.

Lane D.J. 16S/23S rRNA sequencing // Nucleic acid techniques in bacterial systematics. 1991. P. 115−175.

Mahajan R. et al. Biodegradation of di‑n‑butyl phthalate by psychrotolerant Sphingobium yanoikuyae strain P4 and protein structural analysis of carboxylesterase involved in the pathway // International Journal of Biological Macromolecules. 2019. Vol. 122. P. 806−816. DOI: 10.1016/j.ijbiomac.2018.10.225.

Parales R.E., Resnick S.M. Aromatic ring hydroxylating dioxygenases // Pseudomonas: Volume 4 Molec-ular Biology of Emerging Issues. Boston, MA: Springer US, 2006. P. 287−340.

Peng C. et al. Biodegradation of various phthalic acid esters at high concentrations by Gordonia alkan-ivorans GH-1 and its degradation mechanism // Environmental Technology & Innovation. 2025. Vol. 38. Art. 104066. DOI: 10.1016/j.eti.2025.104066.

Qiao Y. et al. Novel agents consisting of Pseudomonas zhaodongensis and dimethylsulfoniopropionate (DMSP) enhancing bioremediation of oil-contaminated sediments at deep-sea condition // Environmental Tech-nology & Innovation. 2024. Vol. 36. Art. 103744. DOI: 10.1016/j.eti.2024.103744.

Raymond R.L. Microbial oxidation of n-paraffinic hydrocarbons // Developments in Industrial Microbi-ology. 1961. Vol. 2(1). P. 23−32.

Ren C. et al. Complete degradation of di-n-butyl phthalate by Glutamicibacter sp. strain 0426 with a novel pathway // Biodegradation. 2024. Vol. 35(1). P. 87−99. DOI: 10.1007/s10532-023-10032-7.

Ren L. et al. Bacteria-mediated phthalic acid esters degradation and related molecular mechanisms // Applied Microbiology and Biotechnology. 2018. Vol. 102(3). P. 1085–1096. DOI: 10.1007/s00253-017-8687-5.

Sharma N. et al. DBP biodegradation kinetics by Acinetobacter sp. 33F in pristine agricultural soil // Envi-ronmental Technology & Innovation. 2021. Vol. 21. Art. 101240. DOI: 10.1016/j.eti.2020.101240.

Varshney S., Bhattacharya A., Gupta A. Halo-alkaliphilic microbes as an effective tool for heavy metal pollution abatement and resource recovery: challenges and future prospects // 3 Biotech. 2023. Vol. 13(12). Art. 400. DOI: 10.1007/s13205-023-03807-5.

Wang Y., Qian H. Phthalates and their impacts on human health // Healthcare (Basel). 2021. Vol. 9(5). Art. 603. DOI: 10.3390/healthcare9050603.

Xu W. et al. Bacterial communities and culturable petroleum hydrocarbon degrading bacteria in marine sediments in the northeastern South China Sea // Frontiers in Environmental Sciences. 2022. Vol. 10. Art. 865636. DOI: 10.3389/fenvs.2022.865636.

Yadav A.N., Saxena A.K. Biodiversity and biotechnological applications of halophilic microbes for sus-tainable agriculture // Journal of Applied Biology and Biotechnology. 2018. Vol. 6(1). P. 48−55. DOI: 10.7324/JABB.2018.60109.

Zhang H. et al. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J-2 // Microbial Cell Factories. 2017. Vol. 16. Art. 80. DOI: 10.1186/s12934-017-0695-8.

Zhang L. et al. Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils // Interna-tional Journal of Systematic and Evolutionary Microbiology. 2015. Vol. 65(Pt 3). P. 1022−1030. DOI: 10.1099/ijs.0.000057.

Zhao Z. et al. Diversity and potential metabolic characteristics of culturable copiotrophic bacteria that can grow on low-nutrient medium in Zhenbei Seamount in the South China Sea // Microbial Ecology. 2024. Vol. 87. Art. 157. DOI: 10.1007/s00248-024-02475-z.

Наиболее читаемые статьи этого автора (авторов)

<< < 1 2