Analysis of genome-wide associations with tarsus length in Tsarskoye selo, Uzbek Game and Cornish chicken breeds

Main Article Content

Anastasiia I. Azovtseva
Anna E. Ryabova
Natalia V. Dementieva

Abstract

Morphological characteristics of the skeleton have a special influence on economically useful traits. Phenotypic data indirectly reflect an individual's genetic potential. Tarsus length is one of the main indicators of bone development, which is due to the correlation of this parameter with live weight. The aim of the present study was to identify candidate regions responsible for the tarsus length. Studies were conducted on Tsarskoye Selo, Uzbek Game and Cornish breeds. One candidate region on chromosome 9 associated with metatarsal length was identified based on whole-genome genotyping data and GWAS-analysis results. The identified region contained 50 SNPs localized in EIF4A2, RFC4, MCF2L2, LAMP3, MCCC1, and DCUN1D1 genes that maximally distinguished the breeds from each other. Some genes are involved in the processes of skeletal muscle formation and homeostasis, others in the processes of bone homeostasis and autophagy, as well as in the development and course of osteosarcoma. The greatest differences in allele frequencies between Cornish and Uzbek Game breeds are observed in SNPs of MCCC1, LAMP3, and MCF2L2 genes. Interestingly, for SNPs of the same genes, the maximum similarities of allele frequencies were observed in Tsarskoye Selo and Uzbek Game breeds. The present study expands the existing knowledge on the mechanisms controlling growth and development of chicken bone structures.

Article Details

How to Cite
Azovtseva А. И., Ryabova А. Е., & Dementieva Н. В. (2025). Analysis of genome-wide associations with tarsus length in Tsarskoye selo, Uzbek Game and Cornish chicken breeds. Bulletin of Perm University. Biology, (3), 289–297. https://doi.org/10.17072/1994-9952-2025-3-289-297
Section
Генетика
Author Biographies

Anastasiia I. Azovtseva, Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Re-search Center for Animal Husbandry, Pushkin, St. Petersburg, Russia

PhD student, junior researcher

Anna E. Ryabova, Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Re-search Center for Animal Husbandry, Pushkin, St. Petersburg, Russia

PhD student, junior researcher

Natalia V. Dementieva, Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Re-search Center for Animal Husbandry, Pushkin, St. Petersburg, Russia

Cand. Biol. Sci., leading researcher, head of the laboratory of molecular biology

References

Азовцева А.И. и др. Анализ селекционного прогресса в популяциях царскосельской породы кур на основании экстерьерных данных // Достижения науки и техники АПК. 2024. № 38. С. 21–28. DOI: 10.53859/02352451_2024_38_5_21. EDN: HHGRRD.

Вахрамеев А.Б. и др. Оценка продуктивности породы кур царскосельская // Птицеводство. 2024. № 1. С. 5–11. DOI: 10.33845/0033-3239-2024-73-1-5-11. EDN: WAHDEJ.

Силюкова Ю.Л. Бойцовые породы кур: история происхождения и современное состояние // Генети-ка и разведение животных. 2018. № 2. C. 117–122. DOI: 10.31043/2410-2733-2018-2-117-122. EDN: XURUTR.

Cao J. Studies on the Regulatory Mechanism of the ULK1 Complex in the Induction of Autophagy: ab-stract PhD dissertation. USA, Minnesota, 2012. 127 p.

Carss K.J. et al. Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound // Hum. Mol. Genet. 2014. Vol. 23, № 12. Р. 3269–3277. DOI: 10.1093/hmg/ddu038.

Emrani H. et al. Genome-wide association study of shank length and diameter at different developmental stages in chicken F2 resource population // Anim. Genet. 2020. Vol. 51, № 5. Р. 722–730. DOI: 10.1111/age.12981. EDN: GEOIEE.

Gao Y. et al. Identification of quantitative trait loci for shank length and growth at different development stages in chicken // Anim. Genet. 2010. Vol. 41, № 1. Р. 101–104. DOI: 10.1111/j.1365-2052.2009.01962.x.

González-Cerón F., Rekaya R., Aggrey S.E. Genetic relationship between leg problems and bone quality traits in a random mating broiler population // Poult. Sci. 2015. Vol. 94, № 8. Р. 1787–1790.

Hudson D.M. et al. P3h3-null and Sc65-null Mice Phenocopy the Collagen Lysine Under-hydroxylation and Cross-linking Abnormality of Ehlers-Danlos Syndrome Type VIA // J. Biol. Chem. 2017. Vol. 292, № 9. Р. 3877–3887. DOI: 10.1074/jbc.M116.762245.

Kubota T. et al. Biological implications of fetuin for bone remodeling system and possible evidence for its use in heterotopic ossification // Asian Journal of Oral and Maxillofacial Surgery. 2012. Vol. 24, № 1. C. 36–41.

Li Y. et al. LAMP3 promotes the invasion of osteosarcoma cells via SPP1 signaling // Mol. Med. Rep. 2017. Vol. 16, № 5. Р. 5947–5953. DOI: 10.3892/mmr.2017.7349.

Li Y.D. et al. A combination of genome-wide association study and selection signature analysis dissects the genetic architecture underlying bone traits in chickens // Animal. 2021. Vol. 15, № 8. Art. 100322. DOI: 10.1016/j.animal.2021.100322. EDN: RDUGGS.

Liu S. et al. LAMP3 plays an oncogenic role in osteosarcoma cells partially by inhibiting TP53 // Cell Mol. Biol. Lett. 2018. № 23. Art. 33. DOI: 10.1186/s11658-018-0099-8. EDN: AMCEIG.

Magnuson A. D. et al. Supplemental methionine and stocking density affect antioxidant status, fatty ac-id profiles, and growth performance of broiler chickens // J. Anim. Sci. 2020. Vol. 98, № 4. Art. skaa092. DOI: 10.1093/jas/skaa092. EDN: EKKCAN.

Morimoto M. et al. Expanding the genetic and phenotypic landscape of replication factor C complex-related disorders: RFC4 deficiency is linked to a multisystemic disorder // Am. J. Hum. Genet. 2024. Vol. 111, № 9. Р. 1970–1993. DOI: 10.1016/j.ajhg.2024.07.008. EDN: FULZHX.

Nagelkerke A. et al. LAMP3 is involved in tamoxifen resistance in breast cancer cells through the modu-lation of autophagy // Endocr. Relat. Cancer. 2014. Vol. 21, № 1. Р. 101–112. DOI: 10.1530/ERC-13-0183. EDN: YELNON.

Nicklin P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy // Cell. 2009. Vol. 136, № 3. Р. 521–534. DOI: 10.1016/j.cell.2008.11.044.

Paccez J.D. et al. DCUN1D1 and neddylation: Potential targets for cancer therapy // Biochim. Biophys. Acta Mol. Basis Dis. 2024. Vol. 1870, № 7. Art. 167308. DOI: 10.1016/j.bbadis.2024.167308. EDN: LQTTFD.

Park S. et al. B-cell translocation gene 2 (Btg2) regulates vertebral patterning by modulating bone mor-phogenetic protein/smad signaling // Mol. Cell Biol. 2004. Vol. 24, № 23. Р. 10256–10262. DOI: 10.1128/MCB.24.23.10256-10262.2004.

Peng C. et al. Investigation of crucial genes and microRNAs in conventional osteosarcoma using gene expression profiling analysis // Mol. Med. Rep. 2017. Vol. 16, № 5. Р. 7617–7624. DOI: 10.3892/mmr.2017.7506.

Ran S. et al. Association of 3p27.1 Variants with Whole Body Lean Mass Identified by a Genome-wide Association Study // Sci. Rep. 2020. Vol. 10, № 1. Art. 4293. DOI: 10.1038/s41598-020-61272-z. EDN: LOXNCC.

Rodrigues L.C. et al. Osteosarcoma tissues and cell lines from patients with differing serum alkaline phosphatase concentrations display minimal differences in gene expression patterns // Vet. Comp. Oncol. 2016. Vol. 14, № 2. Р. 58–69. DOI: 10.1111/vco.12132.

Rucci N. et al. Proline/arginine-rich end leucine-rich repeat protein N-terminus is a novel osteoclast an-tagonist that counteracts bone loss // J. Bone. Miner. Res. 2013. Vol. 28, № 9. Р. 1912–1924. DOI: 10.1002/jbmr.1951.

Shapiro I.M. et al. Boning up on autophagy: the role of autophagy in skeletal biology // Autophagy. 2014. Vol. 10, № 1. Р. 7–19. DOI: 10.4161/auto.26679.

Suzuki A., Iwata J. Amino acid metabolism and autophagy in skeletal development and homeostasis // Bone. 2021. № 146. Art. 115881. DOI: 10.1016/j.bone.2021.115881. EDN: QCLLHP.

Tevlin R. et al. Denervation during mandibular distraction osteogenesis results in impaired bone for-mation // Sci. Rep. 2023. Vol. 13, № 1. Art. 2097. DOI: 10.1038/s41598-023-27921-9. EDN: KLXXYL.

Tsudzuki M. et al. Identification of quantitative trait loci affecting shank length, body weight and car-cass weight from the Japanese cockfighting chicken breed, Oh-Shamo (Japanese Large Game) // Cytogenet. Genome Res. 2007. Vol. 117, № 1-4. Р. 288–295. DOI: 10.1159/000103190.

Wong K.M. et al. Mutations in TAF8 cause a neurodegenerative disorder // Brain. 2022. Vol. 145, № 9. Р. 3022–3034. DOI: 10.1093/brain/awac154. EDN: HQQWKO.

Zhang Z. et al. Copy number variation of EIF4A2 loci related to phenotypic traits in Chinese cattle // Vet. Med. Sci. 2022. Vol. 8, № 5. Р. 2147–2156. DOI: 10.1002/vms3.875. EDN: CRCZVC.