On Shilla Graphs Γ With b2=c2 Having Eigenvalue θ2=0

Authors

  • Alexander A. Makhnev School of Science, Hainan University; N. N. Krasovskii Institute of Mathematics and Mechanics
  • Victoriya V. Bitkina North Ossetian State University after K.L. Khetagurov
  • Alina K. Gutnova North Ossetian State University after K.L. Khetagurov

DOI:

https://doi.org/10.17072/1993-0550-2024-3-16-22

Keywords:

block scheme, distance-regular graph, Shilla graph

Abstract

The Shilla graph with b2=c2 and eigenvalue θ2=0 has intersection array {b(b+1)s,(bs+s+1)(b-1),bs;1,bs,(b2-1)s}. There are only seven graphs out of 55 with b<100 do not lie in the series {4s3+6s2+2s,4s3+4s2+2s,2s2+s;1,2s2+s,4s3+4s2}.This paper studies the Shilla graphs with b2=c2, eigenvalue θ2=0 and intersection array {4s3+6s2+2s,4s3+4s2+2s,2s2+s;1,2s2+s,4s3+4s2}.

References

Brouwer A.E., Cohen A.N., Neumaier A. Distance-Regular Graphs // Springer-Verlag. Berlin Heidelberg New-York, 1989.

Koolen J, Park J. Shilla distance-regular graphs // Europ. J. Comb. 31, 2064–2073, 2010.

Makhnev A.A., Belousov I.N. On distance-regular graphs of diameter 3 with eigenvalue // Trudy Institute Math. (Novosibirsk). 33, № 1, 162–173, 2022.

Coolsaet K., Juriˇsi´c A. Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs // J. Comb. Theory, Series A. 2008. Vol. 115. 1086–1095.

Published

2024-10-16

How to Cite

Makhnev А. А., Bitkina В. В., & Gutnova А. К. (2024). On Shilla Graphs Γ With b2=c2 Having Eigenvalue θ2=0. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (3 (66), 16–22. https://doi.org/10.17072/1993-0550-2024-3-16-22