On Shilla Graphs Γ With b2=c2 Having Eigenvalue θ2=0
DOI:
https://doi.org/10.17072/1993-0550-2024-3-16-22Keywords:
block scheme, distance-regular graph, Shilla graphAbstract
The Shilla graph with b2=c2 and eigenvalue θ2=0 has intersection array {b(b+1)s,(bs+s+1)(b-1),bs;1,bs,(b2-1)s}. There are only seven graphs out of 55 with b<100 do not lie in the series {4s3+6s2+2s,4s3+4s2+2s,2s2+s;1,2s2+s,4s3+4s2}.This paper studies the Shilla graphs with b2=c2, eigenvalue θ2=0 and intersection array {4s3+6s2+2s,4s3+4s2+2s,2s2+s;1,2s2+s,4s3+4s2}.References
Brouwer A.E., Cohen A.N., Neumaier A. Distance-Regular Graphs // Springer-Verlag. Berlin Heidelberg New-York, 1989.
Koolen J, Park J. Shilla distance-regular graphs // Europ. J. Comb. 31, 2064–2073, 2010.
Makhnev A.A., Belousov I.N. On distance-regular graphs of diameter 3 with eigenvalue // Trudy Institute Math. (Novosibirsk). 33, № 1, 162–173, 2022.
Coolsaet K., Juriˇsi´c A. Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs // J. Comb. Theory, Series A. 2008. Vol. 115. 1086–1095.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Александр Алексеевич Махнев, Виктория Васильевна Биткина, Алина Казбековна Гутнова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are published under license Creative Commons Attribution 4.0 International (CC BY 4.0).