Q-polynomial Graph With an Intersections Array {60, 45, 8; 1, 12, 50} Does not Exist

Authors

DOI:

https://doi.org/10.17072/1993-0550-2023-2-29-33

Keywords:

block design, distance-regular graph, Q-polynomial graph

Abstract

When studying amply regular graphs Γ of diameter d, in which for some vertex a the pair (Γd(a), Γd-1(a)) is a 2-cheme, it is proved that the subgraph induced by the set of points is a clique, coclique, or strongly regular graph. For a graph of diameter 3, it is established that this construction is a 2-cheme for any vertex a if and only if the graph is distance-regular and for any vertex a the subgraph Γ3(a) is a clique, coclique, or strongly regular graph (A.L. Gavrilyuk, A.A. Makhnev). An interesting question is whether there is a distance-regular graph with intersection array {60,45,8;1,12,50} such that Γ3(a) can be a 6×6-lattice and the pair (Γ3(a), Γ2(a)) will be a 2-scheme. In the paper of I.N. Belousov and A.A. Makhnev (2018) published a proof of the non-existence of the abovementioned graph, that contained errors. In this paper, we give a correct proof of this result. 

References

Гаврилюк А.Л., Махнев А.А. Вполне регулярные графы и блок-схемы // Сиб. матем. жур-нал. 2006. Т. 47, № 4. С. 753–768.

Gavrilyuk A.L. Makhnev A.A. Automorphisms of graphs with intersection arrays {60, 45, 8; 1, 12, 50} and {49, 36, 8; 1, 6, 42} // Mathematical Zametki. 2017. Vol. 101, № 6. 823–831.

Белоусов И.Н., Махнев А.А. Дистанционно регулярные графы с массивами пересечений {42, 30, 12; 1, 6, 28} и {60, 45, 8; 1, 12, 50} не существуют // Сибирские электрон. матем. известия. 2018. Т. 15. 1506–1512.

Coolsaet K., Juriˇsi´c A. Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs // J. Comb. Theory, Series A. 2008. Vol. 115. 1086–1095.

Brouwer A.E., Cohen A.N., Neumaier A. Distance-Regular Graphs // Springer-Verlag. Berlin Heidelberg New-York, 1989.

Gavrilyuk A., Koolen J. A characterization of the graphs of bilinear dxd-forms over F2 // Combinatorica. 2019. Vol. 39, № 2. 289–321.

Published

2023-06-30

How to Cite

Makhnev А. А., Bitkina В. В., & Gutnova А. К. (2023). Q-polynomial Graph With an Intersections Array {60, 45, 8; 1, 12, 50} Does not Exist. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (2 (61), 29–33. https://doi.org/10.17072/1993-0550-2023-2-29-33