An Iterative Method for Linear Algebraic Equations Systems Solving With Positive Semidefinite Matrices

Authors

DOI:

https://doi.org/10.17072/1993-0550-2023-1-30-46

Keywords:

systems of linear algebraic equations, iterative methods, Quasi-Newton methods, SR1-formula, multibody system, equations of motion, additional constraints, numerical integration

Abstract

The normal pseudo-solution for perturbed linear algebraic equations systems with positive semidefinite matrices finding problem is considered. This problem is actual for numerical simulation process of a multibody systems dynamics taking into account additional constraints on its motion. The problem is solved by the iterative quasi-Newtonian method based on the SR1-formula for quadratic functions minimum finding. The main algorithm properties are proved. An one mechanical system dynamics study example is given, which shows the method efficiency.

References

Величенко В.В. Матрично-геометрические методы в механике с приложениями к задачам робототехники. М.: Наука, 1988. 280 c.

Лилов Л.К. Моделирование систем связанных тел. М.: Наука, 1993. 272 c.

Суслов Г.К. Теоретическая механика. М.: Гостехиздат, 1946. 656с.

Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999. 548c.

Шевцов Г.С. Численные методы линейной алгебры: учеб. пособие / Г.С. Шевцов, О.Г.

Крюкова, Б.И. Мызникова. М.: Финансы и статистика: ИНФРА-М, 2008. 480 с.

Wolfe Р. Convergence conditions for ascent methods // SIAM review, Apr. 1969, Vol. 11, № 2. P. 226–235.

Wolfe Р. Convergence conditions for ascent methods. II: Some corrections // SIAM Review, Apr. 1971, Vol. 13, № 2. P. 185–188.

Conn A.R., Gould N.I.M., Toint Ph.L. Convergence of quasi-Newton matrices generated by the symmetric rank-one update // Mathematical Programming. 1991. 50, № 1. Р. 177–195.

Byrd R.H., Khalfan H.F., Schnabel R.B. Analysis of a symmetric rank-one trust region method // SIAM J. on Optimization. 1996. 6. Р. 1025–1039.

Khalfan H.F., Byrd R.H., Schnabel R.B. A theoretical and experimental study of the symmetric rank-one update // SIAM J. on Optimization. 1993. 3. Р. 1–24.

Аоки М. Введение в методы оптимизации. М.: Наука, 1977. 344 с.

Дэннис Дж., Шнабель Р. Численные методы безусловной оптимизации и решения нелинейных уравнений. М.: Мир, 1988. 440 с.

Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983. 384 с.

Химмельблау Д. Прикладное нелинейное программирование. М.: Мир, 1975. 536 с.

Nocedal J., Wright S.J. Numerical Optimization. Berlin: Springer, 2006. 664 р.

Фиакко А., Мак-Кормик Г. Нелинейное программирование. Методы последовательной безусловной минимизации. М.: Мир, 1972. 240 с.

Farzin M., Malik Abu H., Wah J.L. Multisteps symmetric rank-one update for unconstrained optimization // World Applied Sci. J. 2009. 7, № 5. Р. 610–615.

Farzin M., Malik Abu H., Wah J.L. Memoryless modified symmetric rank-one method for large-scale unconstrained optimization // American J. of Applied Sciences. 2009. 6, № 12. Р.2054–2059.

Farzin M., Malik Abu H., Wah J.L. Convergence of symmetric rank-one method based on modified quasi-Newton equation // J. of Math. Res. 2010. 2, № 3. P. 97–102.

Yueting Y., Chengxian X. A switching algorithm based on modified quasi-Newton equation // Numer. Math. A J. of Chinese Universities. 2006. 15, N 3. 257–267.

Wah J.L., Malik Abu H. Convergence of a positive definite symmetric rank-one method with restart // Advanced Modeling and Optimization. 2009. 11, № 4. P. 423–433.

Wah J.L., Malik Abu H. A restarting approach for the symmetric rank one update for unconstrained optimization // Comput. Optim. Appl. 2009. 42. P. 327–334.

Al-Baali M., Fuduli A., Musmanno R. On the performance of switching BFGS/SR1 algorithms for unconstrained optimization // Optimization Methods and Software Vol. 19, № 2, April 2004, Р. 153–164.

Öztoprak F.& Ş., İlker Birbil S.I. A Symmetric Rank-One Quasi-Newton Line-Search Method Using Negative Curvature Directions // Optimization Methods and Software. Vol. 26, 2011. P. 455–486.

Farzin M., Malik Abu H., Wah J.L. A sym metric rank-one method based on extra updating techniques for unconstrained optimization // Computers and Mathematics with Applications. 62 (2011). Р. 392–400.

Farzin M., Wah J.L. On the performance of a new symmetric rank-one method with restart for solving unconstrained optimization problems // Computers and Mathematics with Аp plications. 64 (2012). Р. 2141–2152.

Shu-Zhen Lai, Hou-Biao Li, Zu-Tao Zhang. A Symmetric Rank-One Quasi-Newton Method for Nonnegative Matrix Factorization // ISRN Applied Mathematics. Vol. 2014, Article ID 846483. 11 p.

Benson H.Y., Shanno D.F. Cubic regularization in symmetric rank-1 quasi-Newton methods // Math. Prog. Comp. 2018. 10. P. 457–486.

Indrapriyadarsini S., Mahboubi S., Ninomiya H., Kamio T., Asai H. Accelerating Symmetric Rank-1 Quasi-Newton Method with Nesterov’s Gradient for Training Neural Networks // Algorithms 2022, 15, 6. 1–16p.

Иванов В.Н. Основные свойства обратного итерационного алгоритма решения систем линейных уравнений с положительно определенными матрицами // Вычислительные методы и программирование. 2012. Т. 13, № 2. С. 366–376.

Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. М.: Мир, 1985. 509 с.

Мину М. Математическое программирование. Теория и алгоритмы. М.: Наука, 1990. 488 с.

Published

2023-03-31

How to Cite

Ivanov В. Н. (2023). An Iterative Method for Linear Algebraic Equations Systems Solving With Positive Semidefinite Matrices. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (1 (60), 36–46. https://doi.org/10.17072/1993-0550-2023-1-30-46