Some Shilla Graphs with b = 5 do not Exist
DOI:
https://doi.org/10.17072/1993-0550-2022-2-40-45Keywords:
distance-regular graph, intersection array, Shilla graphAbstract
A Shilla graph is a distance-regular graph of diameter 3 that has a second eigenvalue equal to a = a3 . Koolen and Park found admissible arrays of intersections of the Shill graphs with b = 3 (there were 12 of them). Belousov I.N. found feasible intersection arrays of the Shilla graphs with b = 4 (there were 50 of them) and b = 5 (there were 82 of them). It is proved in the paper that distance-regular Schill graphs with b = 5 and intersection arrays {305,248,62;1,2,244}, {315,256,64;1,2,252}, {345,280,64;1,4,276},{615,496,124;1,4,492}, {815,656,164;1,2,652}, {855,688,172;1,4,684}, {855,688,170;1,5,684}, {910,732,180;1,10, 728}, {1000,804,201;1,3,800}, {1045,840,210;1,6,836}, {1055,848,212;1,4,844}, {1080,868,215;1,5,864}, {1155,928,232;1,2,924}, {1185,952,245;1,5,948}, {1235,992,248;1,8,988},{1535,1232,308;1,8,1228}, {1560,1252,310;1,10,1248}, {1615,1296,324;1,12,1292}, {1665,1336,334;1,2,1332} do not exist.References
Brouwer A. E., Cohen A. M., Neumaier A. Distance-Regular Graphs. Berlin-Heidelberg-New York: Springer-Verlag, 1989. 495 p.
Koolen J. H., Park J. Shilla distance-regular graphs // Europ. J. Comb. 2010. V. 31. P. 2064–2073.
Белоусов И. Н. Дистанционно регулярные графы Шилла с // Труды ИММ УрО РАН. 2018. Т. 24, № 3. С. 16–26.
Belousov I. N., Makhnev A. A. Shilla graphs with b=5 and b=6 // Ural Math. Jornal. 2021. V. 7, № 2. P. 51–58.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Хайян Ли, Александр Алексеевич Махнев, Иван Николаевич Белоусов
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are published under license Creative Commons Attribution 4.0 International (CC BY 4.0).