Representation of a solution for a system of linear inhomogeneous two-dimensional difference equations of fractional order
DOI:
https://doi.org/10.17072/1993-0550-2021-1-5-8Keywords:
2D-linear fractional order system, fractional sum, analogue of Riemann matrices, representation of solutionsAbstract
One linear inhomogeneous two-parameter discrete fractional system is considered, and the boundary condition is a solution of an analogue of the Cauchy problem for a linear ordinary difference equation. Equation coefficients are given by discrete matrix functions. By introducing an analogue of the Riemann matrix, representations of solutions of the considered boundary value problem are obtained. Note that the result obtained plays an essential role in the linear case for establishing a necessary and sufficient optimality condition in the form of the Pontryagin maximum principle, and also in the general case for studying special control in discrete optimal control problems for systems of 2D fractional orders.References
T. Kaczorek. Reachability of positive 2D fractional linear systems. Physica Scripta, 2009.
M. Feckan, J.Wang, M.Pospisil. Fractionalorder equations and inclusions. Vol. 3. 2010.384 p.
Sajewski, Ł. Positive realization of SISO 2D different orders fractional discrete-time linear systems. Acta Mechanica et Automatica 5(2). P. 122–127 (2011).
Nuno R.O. Bastos, Rui A.C.Ferreria, Delfim F.M.Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems-Series B (DCDS-B). 2010. P. 21.
Мансимов К.Б. Дискретные системы. Баку: Изд-во Бакинского гос. ун-та. 2002. 114 с.
Гайшун И.В. Многопараметрические системы управления. Минск: Наука и техника, 1996. 200 с.
Мансимов К.Б., Масталиев Р.О. Оптимизация процессов, описываемых разностными уравнениями Вольтерра. LAP LAMBERT Academic Publishing. 2017. 263 c.
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under license Creative Commons Attribution 4.0 International (CC BY 4.0).