Modal structuralism and the problem of integration

Philosophy "Mathematical objects, structures and proofs" (thematic issue)

Authors

  • Ilya A. Gushchin Ural Federal University named after the first President of Russia B.N. Yeltsin, 51, Lenin av., Ekaterinburg, 620002, Russia

DOI:

https://doi.org/10.17072/2078-7898/2022-3-380-388

Keywords:

modal structuralism, modal normativism, Platonism, modal metaphysics, modal epistemology, object, structure

Abstract

Modal structuralism attempts to solve the problems of Platonism in the philosophy of mathematics. First, the paper presents the view that modal structuralism emerges out of Benacerraf’s arguments against Platonism and set-theoretic reductionist realism. Putnam’s account is showed to be another source of influence on modal structuralism. Second, the basic ideas of modal structuralism are reviewed, with special attention paid to how the translation of mathematical statements into modal sentences helps to avoid the set-theoretic grounding of such statements. However, since possible worlds are conceived as set-theoretic entities, the translation itself faces the problem of potential circular explanation. To solve the problem, Hellman suggests taking modalities as primitives, but his solution faces additional issues. Two of them are an unclear metaphysical status of the possible structures mathematicians make statements about and an obscure epistemic access mathematicians have to these structures. In order to avoid these issues, the paper suggests combining modal structuralism with modal normativism. According to the latter, modal statements are not about objects or facts but about linguistic rules. Since modal normativists interpret the possible structures as non-metaphysical entities, the problem of epistemic access to such structures transforms into the problem of the agent’s knowledge of the semantic rules of mathematical language. It is also pointed out that modal normativism might solve another set of structuralist problems, not specifically concerned with modalities, e.g., the problem of objects’ dependence on the structures in which they are embedded.

Author Biography

Ilya A. Gushchin, Ural Federal University named after the first President of Russia B.N. Yeltsin, 51, Lenin av., Ekaterinburg, 620002, Russia

Assistant Lecturer of the Departmentof Ontology and Theory of Knowledge,Ural Institute of Humanities

References

Ламберов Л.Д. Бенацерраф и теоретико-множественный редукционистский реализм // Эпистемология и философия науки. 2021. Т. 58, № 1. С. 142–160. DOI: https://doi.org/10.5840/eps202158115

Ламберов Л.Д. Математический структурализм с точки зрения (модальной) теории множеств // Вестник Томского государственного университета. Философия. Социология. Политология. 2022. № 65. С. 28–36. DOI:http://doi.org/10.17223/1998863X/65/3

Целищев В.В. Философия математики. Новосибирск: Наука, 2002. 212 с.

Benacerraf P. What Numbers Could not Be // The Philosophical Review. 1965. Vol. 74, no. 1. P. 47–73. DOI: https://doi.org/10.2307/2183530

Benacerraf P. Mathematical Truth // The Journal of Philosophy. 1973. Vol. 70, iss. 19. P. 661–679. DOI: https://doi.org/10.2307/2025075

Field H. Science Without Numbers: The Defence of Nominalism. Princeton, NJ: Princeton University Press, 1980. 144 p.

Hellman G. Mathematics Without Numbers: Towards a Modal-Structural Interpretation. N.Y.: Clarendon Press, 1989. 168 p.

Hellman G. Structuralism // The Oxford Handbook of Philosophy of Mathematics and Logic / ed. by S. Shapiro. N.Y.: Oxford University Press, 2005. P. 536–562. DOI: https://doi.org/10.1093/0195148770.003.0017

Hellman G. Structuralism Without Structures // Philosophia Mathematica. 1996. Vol. 4, iss. 2. P. 100–123. DOI: https://doi.org/10.1093/philmat/4.2.100

Linnebo Ø. Structuralism and the Notion of Dependence // The Philosophical Quarterly. 2008. Vol. 58, iss. 230. P. 59–79. DOI: https://doi.org/ 10.1111/j.1467-9213.2007.529.x

Linnebo Ø. Thin Objects: An Abstractionist Account. N.Y.: Oxford University Press, 2018. 288 p. DOI:https://doi.org/10.1093/oso/9780199641314.001.0001

Lucas J.R. The Conceptual Roots of Mathematics. London, UK: Routledge, 2000. 470 p. DOI: https://doi.org/10.4324/9780203028421

Peacocke C. Being Known. N.Y.: Oxford University Press, 1999. 368 p. DOI: https://doi.org/10.1093/0198238606.001.0001

Putnam H. Mathematics without Foundations // The Journal of Philosophy. 1967. Vol. 64, iss. 1. P. 5–22. DOI:https://doi.org/10.2307/2024603

Shapiro S. Philosophy of Mathematics: Structure and Ontology. N.Y.: Oxford University Press, 1997. 296 p.

Thomasson A.L. How Can We Come to Know Metaphysical Modal Truths? // Synthese. 2021. Vol. 198. P. 2077–2106. DOI: https://doi.org/10.1007/s11229-018-1841-5

References

Benacerraf, P. (1965). What numbers could not be. The Philosophical Review. Vol. 74, no. 1, pp. 47–73. DOI: https://doi.org/10.2307/2183530

Benacerraf, P. (1973). Mathematical truth. The Journal of Philosophy. Vol. 70, iss. 19, pp. 661–679. DOI: https://doi.org/10.2307/2025075

Field, H. (1980). Science Without Numbers: The Defence of Nominalism. Princeton, NJ: Princeton University Press, 144 p.

Hellman, G. (1989). Mathematics without numbers: Towards a modal-structural interpretation. New York: Clarendon Press, 168 p

Hellman, G. (1996). Structuralism without structures. Philosophia Mathematica. Vol. 4, no. 2, pp. 100–123. DOI: https://doi.org/10.1093/philmat/4.2.100

Hellman, G. (2005). Structuralism. S. Shapiro (ed.) The Oxford handbook of philosophy of mathematics and logic. New York: Oxford University Press, pp. 536–562. DOI: https://doi.org/10.1093/0195148770.003.0017

Lamberov, L.D. (2021). [Benacerraf and settheoretic reductionist realism]. Epistemologiya i filosofiya nauki. Vol. 58, no. 1, pp. 142–160. DOI: https://doi.org/10.5840/eps202158115

Lamberov, L.D. (2022). [Mathematical structuralism from the standpoint of (modal) set theory]. Vestnik Tomskogo gosudarstvennogo universiteta. Filosofiya. Sotsiologiya. Politologiya [Tomsk State University Journal of Philosophy, Sociology and Political Science]. No. 65, pp. 28–36. DOI: http://doi.org/10.17223/1998863X/65/3

Linnebo, Ø. (2008). Structuralism and the notion of dependence. The Philosophical Quarterly. Vol. 58, iss. 230, pp. 59–79. DOI: https://doi.org/10.1111/j.1467-9213.2007.529.x

Linnebo, Ø. (2018). Thin objects: An abstractionist account. New York: Oxford University Press, 288 p. DOI: https://doi.org/10.1093/oso/9780199641314.001.0001

Lucas, J.R. (2000). The conceptual roots of mathematics. London, UK: Routledge Publ., 470 p. DOI: https://doi.org/10.4324/9780203028421

Peacocke, C. (1999). Being known. New York: Oxford University Press, 368 p. DOI: https://doi.org/10.1093/0198238606.001.0001

Putnam, H. (1967). Mathematics without foundations. The Journal of Philosophy. Vol. 64, iss. 1, pp. 5–22. DOI: https://doi.org/10.2307/2024603

Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. New York: Oxford University Press, 296 p.

Thomasson, A.L. (2021). How can we come to know metaphysical modal truths? Synthese. Vol. 198, pp. 2077–2106. DOI: https://doi.org/10.1007/s11229-018-1841-5

Tselischev, V.V. (2002). Filosofiya matematiki [Philosophy of mathematics]. Novosibirsk: Nauka Publ., 212 p

Published

2022-09-29

Issue

Section

Статьи