Поиск новых биоактивных соединений на основе микробной трансформации пентациклических тритерпеноидов олеананового ряда
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Гришко В.В., Ноговицина Е.М., Ившина И.Б. Бактериальная трансформация терпеноидов // Успехи химии. 2014. Т. 83, № 4. С. 323–342.
Лучникова Н.А. и др. Rhodococcus rhodochrous ИЭГМ 1360 – эффективный биокатализатор С3 окислительной трансформации олеанановых тритерпеноидов // Микробиология. 2023. Т. 92, № 2. С. 184–196.
Atanasov A.G. et al. Natural products in drug discovery: advances and opportunities // Nature Reviews Drug Discovery. 2021. Vol. 20. P. 200–216.
Azerad R. Microbial transformations of pentacyclic triterpenes // Green Biocatalysis. 2016. P. 675–714.
Begum S. et al. Nematicidal triterpenoids from Lantana camara // Chemistry and Biodiversity. 2015. Vol. 12. P. 1435–1442.
Blanco-Cabra N. et al. Novel oleanolic and maslinic acid derivatives as a promising treatment against bacterial biofilm in nosocomial infections: an in vitro and in vivo study // ACS Infectious Diseases. 2019. Vol. 5. P. 1581–1589.
Capel C.S. et al. Biotransformation using Mucor rouxii for the production of oleanolic acid derivatives and their antimicrobial activity against oral pathogens // Journal of Industrial Microbiology & Biotechnology. 2011. Vol. 38. P. 1493–1498.
Choudhary M.I., Siddiqui Z.A., Nawaz S.A. Microbial transformation of 18β-glycyrrhetinic acid by Cunninghamella elegans and Fusarium lini, and lipoxygenase inhibitory activity of transformed products // Natural Product Research. 2009. Vol. 23. P. 507–513.
Dean R. et al. The top 10 fungal pathogens in molecular plant pathology // Molecular Plant Pathology. 2012. Vol. 13. P. 414–430.
Djerassi C. et al. Terpenoids. XXIV. The structure of the cactus triterpene queretaroic acid // Journal of the American Chemical Society. 1956. Vol. 78. P. 3783–3787.
Fan B. et al. Anti-inflammatory 18β-glycyrrhetinic acid derivatives produced by biocatalysis // Planta Medica. 2019. Vol. 85. P. 56–61.
Florez H., Singh S. Bioinformatic study to discover natural molecules with activity against COVID-19 // F1000Research. 2020. Vol. 9. P. 1–15.
Fujii Y. et al. Hydroxylation of oleanolic acid to queretaroic acid by cytochrome P450 from Nonomuraea recticatena // Bioscience, Biotechnology, and Biochemistry. 2006. Vol. 70. P. 2299–2302.
Funari C.S. et al. Oleanonic acid from Lippia lupulina (Verbenaceae) shows strong in vitro antileishmanial and antitrypanosomal activity // Acta Amazonica. 2016. Vol. 46. P. 411–416.
Giner-Larza E.M. et al. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity // European Journal of Pharmacology. 2001. Vol. 428. P. 137–143.
Gong T. et al. Microbial transformation of oleanolic acid by Trichothecium roseum // Journal of Asian Natural Products Research. 2014. Vol. 16. P. 383–386.
Guimaraes A.C. et al. Antibacterial activity of terpenes and terpenoids present in essential oils // Molecules. 2019. Vol. 24. P. 2471.
He C.J., Yang Y.M., Wu K.Y. Microbial transformation of glycyrrhetinic acid by Colletotrichum lini AS 3.4486 // Advanced Materials Research. 2015. Vol. 1120–1121. P. 877–881.
Hikino H., Nabetani S., Takemoto T. Microbial transformation of oleanolic acid // Yakugaku Zasshi. 1971. Vol. 91. P. 637–640
Huang D. et al. Anti-tumor activity of a 3-oxo derivative of oleanolic acid // Cancer Letters. 2006. Vol. 233. P. 289–296.
Irungu B.N. et al. Constituents of the roots and leaves of Ekebergia capensis and their potential antiplasmodial and cytotoxic activities // Molecules. 2014. Vol. 19. P. 14235–14246.
Kaminskyy D. et al. Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds // Medicinal Chemistry Research. 2012. Vol. 21. P. 3568–3580.
Kinoshita K. et al. Inhibitory effect of some triterpenes from cacti on 32Pi-incorporation into phospholipids of HeLa cells promoted by 12-O-tetradecanoylphorbol-13-acetate // Phytomedicine. 1999. Vol. 6. P. 73–77.
Lisiak N. et al. Biological activity of oleanolic acid derivatives HIMOXOL and Br-HIMOLID in breast cancer cells is mediated by ER and EGFR // International Journal of Molecular Sciences. 2023. Vol. 24. P. 5099.
Luchnikova N.A. et al. Biotransformation of oleanolic acid using Rhodococcus rhodochrous IEGM 757 // Catalysts. 2022. Vol. 12. P. 1352.
Luchnikova N.A., Grishko V.V., Ivshina I.B. Biotransformation of oleanane and ursane triterpenic acids // Molecules. 2020. Vol. 25. P. 5526.
Ludwig B. et al. Whole-cell biotransformation of oleanolic acid by free and immobilized cells of Nocardia iowensis: Characterization of new metabolites // Engineering in Life Sciences. 2015. Vol. 15. P. 108–115.
Ma Y. et al. Microbial transformation of glycyrrhetinic acid and potent neural anti-inflammatory activity of the metabolites // Chinese Chemical Letters. 2017. Vol. 28. P. 1200–1204.
Maatooq G.T. et al. Bioactive microbial metabolites from glycyrrhetinic acid // Phytochemistry. 2010. Vol. 71. P. 262–270.
Mallavadhani U.V. et al. Synthesis and anti-cancer activity of some novel C-17 analogs of ursolic and oleanolic acids // Medicinal Chemistry Research. 2013. Vol. 22. P. 1263–1269.
Martinez A. et al. Biotransformation of oleanolic and maslinic acids by Rhizomucor miehei // Phytochemistry. 2013. Vol. 94. P. 229–237.
Paterson R.R.M. Fungi and fungal toxins as weapons // Mycological Research. 2006. Vol. 110. P. 1003–1010.
Qin Y.J. et al. Biotransformation of glycyrrhetinic acid by Cunninghamella blakesleeana // Chinese Journal of Natural Medicines. 2010. Vol. 8. P. 373–381.
Rakhimova M.B. et al. Effect of glycyrrhetic acid derivatives on regulation of thymocyte volume // Bulletin of Experimental Biology and Medicine. 2023. Vol. 175. P. 27–31.
Sattarova I. et al. Research of antioxidant and prooxidant properties of glycyrrhetic acid derivatives // Science and Innovation. 2023. Vol. 2. P. 5–9.
Shah S.A.A. et al. Microbial-catalyzed biotransformation of multifunctional triterpenoids derived from phytonutrients // International Journal of Molecular Sciences. 2014. Vol. 15. P. 12027–12060.
Vishwakarma S. et al. In vitro and in silico studies of glycyrrhetinic acid derivatives as antitubercular agents // Letters in Drug Design & Discovery. 2022. Vol. 20. P. 479–487.
Wang W.W. et al. Microbial hydroxylation and glycosylation of pentacyclic triterpenes as inhibitors on tissue factor procoagulant activity // Bioorganic and Medicinal Chemistry Letters. 2017. Vol. 27. P. 1026–1030.
Wu S.B. et al. Cytotoxic triterpenoids and steroids from the bark of Melia azedarach // Planta Medica. 2011. Vol. 77. P. 922–928.
Xu S.H., Zhang C. et al. Site-selective biotransformation of ursane triterpenes by Streptomyces griseus ATCC 13273 // RSC Advances. 2017. Vol. 7. P. 20754–20759.
Xu S.H., Wang W.W. et al. Site-selective oxidation of unactivated C–H sp3 bonds of oleanane triterpenes by Streptomyces griseus ATCC 13273 // Tetrahedron. 2017. Vol. 73. P. 3086–3092.
Xu S.H. et al. Application of tandem biotransformation for biosynthesis of new pentacyclic triterpenoid derivatives with neuroprotective effect // Bioorganic and Medicinal Chemistry Letters. 2020. Vol. 30. P. 126947.
Yan S. et al. Microbial hydroxylation and glycosidation of oleanolic acid by Circinella muscae and their anti-inflammatory activities // Natural Product Research. 2018. Vol. 33. P. 1849–1855.
Zhang J. et al. Novel biotransformation of pentacyclic triterpenoid acids by Nocardia sp. NRRL 5646 // Tetrahedron Letters. 2005. Vol. 46. P. 2337–2340.
Zhang M. et al. Biotransformation of 18β-glycyrrhetinic acid by human intestinal fungus Aspergillus niger RG13B1 and the potential anti-inflammatory mechanism of its metabolites // Journal of Agricultural and Food Chemistry. 2022. Vol. 70. P. 15104–15115.