The Solution of the Sensors Placement Problem for Perimeter Defense Using the Gradient Method

Authors

  • Marina A. Samokhina V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
  • Alexander S. Samokhin V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences https://orcid.org/0000-0002-0821-050X

DOI:

https://doi.org/10.17072/1993-0550-2025-2-123-136

Keywords:

sensors placement, threat environment, evasion countering, path planning, optimization, gradient method, numerical simulations, perimeter defense, breach prevention, maximin

Abstract

The research is devoted to the mathematical aspects of creating a modern security system. The paper develops a method that numerically solves the problem of optimizing the deployment of sensors to counteract the breach of a protected perimeter. The protected perimeter is a segment on the plane, and a mobile object evading detection tries to cross it in a given time. This object is considered as a material point, controlled to minimize the risk functional of detection by the primary hydroacoustic field. The problem is formalized as a maximin problem, the sensors should be placed in the admissible area so that the minimum possible value of the functional of the mobile object was as large as possible. For the solution the authors have developed a program in C++ language. The paper presents the results of numerical modeling obtained using the gradient method and the solution of the boundary value problem of the maximum principle of L.S. Pontryagin to find locally optimal trajectories in the auxiliary problem of pathfinding by a mobile object. The boundary value problem was solved by the shooting method, the corresponding Cauchy problems were initially formed by setting the values of the of the shooting parameters on the grid of their possible values, and were integrated numerically by Runge-Kutta method with automatic step selection. Further, the values of shooting parameters were refined by the modified Newton's method. As a result of numerical modeling of 5 sensors placement, it turned out that it is most advantageous to place them in such a way that the first 6 best locally optimal trajectories of the evading object coincide in functional value.

Author Biography

Alexander S. Samokhin, V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

senior researcher at laboratory 38

References

Gafurov S., Klochkov E. Autonomous Unmanned Underwater Vehicles Development Tendencies // Procedia Engineering. 2015. Vol. 106. P. 141–148. 10.1016/j.proeng.2015.06.017 (дата обращения: 23.04.2025). DOI: 10.1016/j.proeng.2015.06.017 EDN: VAJWBB

Mondal K., Banerjee T., Panja A. Autonomous Underwater Vehicles: Recent Developments and Future Prospects // International Journal for Research in Applied Science and Engineering Technology. 2019. Vol. 7 (XI). P. 215–222. 10.22214/ijraset.2019.11036 (дата обращения: 23.04.2025). DOI: 10.22214/ijraset.2019.11036

Wynn R. B., Huvenne V. A. I., Le Bas T. P., Murton B. J., et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience // Marine Geology. 2014. Vol. 352. P. 451–468. 10.1016/j.margeo.2014.03.012 (дата обращения: 23.04.2025). DOI: 10.1016/j.margeo.2014.03.012

Railey K., Dibiaso D., Schmidt H. Passive acoustic detection and tracking of an unmanned underwater vehicle from motornoise // J. Acoust. Soc. Am. 2021. Vol. 149. A34−A35. 10.1121/10.0004444 (дата обращения: 23.04.2025). DOI: 10.1121/10.0004444

Abbasov I. B. Hydroacoustic Ocean Exploration: Theories and Experimental Application. Beverly, MA, USA: Wiley & Sons and Scrivener Publishing. 2016. 192 p. 10.1002/9781119323723 (дата обращения: 23.04.2025). DOI: 10.1002/9781119323723

Abraham D. A. Underwater Acoustic Signal Processing: Modeling, Detection, and Estimation. Springer Nature: Cham, Switzerland. 2019. 834 p. 10.1007/978-3-319-92983-5 (дата обращения: 23.04.2025). DOI: 10.1007/978-3-319-92983-5

Ivanov P. V., Kolev N. Zh. Acoustical system for synthetic imaging of an underwater object in a hydroacoustical test tank. National conference "Acoustics 2014". Vol. 16. P. 146–150.

Buszman K., Gloza M. Detection of Floating Objects Based on Hydroacoustic and Hydrodynamic Pressure Measurements in the Coastal Zone // Polish Maritime Research, Sciendo. 2020. Vol. 27 (2). P. 168–175. 10.2478/pomr-2020-0038 (дата обращения: 23.04.2025). DOI: 10.2478/pomr-2020-0038 EDN: XEDKIE

Shirokov V., Bazhenova A., Milich V. A set of instruments for tracking moving objects in the underwater environment // AIP Conference Proceedings. 2023. 2605 (1), 020026. 8 p. 10.1063/5.0111555 (дата обращения: 23.04.2025). DOI: 10.1063/5.0111555 EDN: PAYCHY

Galyaev A., Samokhin A., Samokhina M. Application of the Gradient Projection Method to the Problem of Sensors Arrangement for Counteraction to the Evasive Object // 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE. 2021. 3 p. URL: 10.23919/icins43216.2021.9470857 (дата обращения: 23.04.2025). DOI: 10.23919/icins43216.2021.9470857 EDN: IAIIMC

Галяев А. А., Самохин А. С., Самохина М. А. Оптимизация расстановки обнаружителей градиентным методом // Проблемы управления безопасностью сложных систем: материалы XXVIII междунар. конф. 16 декабря 2020 г. М.: ИПУ РАН. 2020. С. 359–363. URL: 10.25728/iccss.2020.90.62.064 (дата обращения: 23.04.2025). DOI: 10.25728/iccss.2020.90.62.064( EDN: MKWRWP

Galyaev A. A., Samokhin A. S., Samokhina M. A. On problem of optimal observers' placement on plane // Journal of Physics: Conference Series. 2021. Vol. 1864. № 1. P. 1–7 URL: (дата обращения: 23.04.2025). DOI: 10.1088/1742-6596/1864/1/012075 EDN: FCIQWC

Dogan A., Zengin U. Unmanned Aerial Vehicle Dynamic-Target Pursuit by Using Probabilistic Threat Exposure Map // Journal of Guidance, Control and Dynamics. 2006. Vol. 29, № 4. P. 723–732. DOI: 10.2514/1.18386

Абрамянц Т. Г., Галяев А. А., Маслов Е. П., Рудько И. М., Яхно В. П. Уклонение подвижного объекта в конфликтной среде от обнаружения системой разнородных наблюдателей // Проблемы управления. 2015. № 2. С. 31–37. EDN: TPWZQH

Сысоев Л. П. Критерий вероятности обнаружения на траектории в задаче управления движением объекта в конфликтной среде // Проблемы управления. 2010. № 6. С. 65–72. EDN: MWLGRL

Самохина М. А., Галяев А. А. Построение карты локально оптимальных путей управляемого подвижного объекта в конфликтной среде при переходе из точки в точку // Проблемы управления. 2024. № 1. С. 90–102. URL: 10.25728/PU.2024.1.8 (дата обращения: 23.04.2025). DOI: 10.25728/PU.2024.1.8 EDN: KAJQCZ

Свидетельство о государственной регистрации программы для ЭВМ № 2020611811 Российская Федерация. Решение задачи Коши многомерным методом Рунге-Кутты, основанным на расчётных формулах Дормана-Принса 8(7), с автоматическим выбором шага: № 2020610774: заявл. 30.01.2020: опубл. 11.02.2020 / А. С. Самохин, М. А. Самохина.

Васильев Ф. П. Методы оптимизации. М.: Факториал Пресс, 2002. 824 с.

Корепанов В. О., Новиков Д. А., Задача о диффузной бомбе // Проблемы управления. 2011. Вып. 5. С. 6–73. URL: 10.1134/S000511791305010X (дата обращения: 23.04.2025). DOI: 10.1134/S000511791305010X EDN: OEECPZ

Корепанов В. О., Новиков Д. А. Модели стратегического поведения в задаче о диф-фузной бомбе // Проблемы управления. 2015. № 2. С. 38–44. EDN: TPWZQR

Published

2025-07-15

How to Cite

Samokhina М. А., & Samokhin А. С. (2025). The Solution of the Sensors Placement Problem for Perimeter Defense Using the Gradient Method. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (2 (69), 123–136. https://doi.org/10.17072/1993-0550-2025-2-123-136