Modeling of the Target Interception Delay in an ADT-Game With Three Defenders
DOI:
https://doi.org/10.17072/1993-0550-2025-3-102-110Keywords:
pursuit, homing system, use of defenders, autonomous vehicle, optimization, numerical simulation, interception, ADT, proportional navigation, decoyAbstract
The paper considers a variant of the flat Attacker-Defender-Target problem with 3 defenders. The problem is considered in simple motions in a flat setting: the target and the defenders move rectilinearly with constant velocity. The initial position of the target and the attacker is given. In this case, the motion of the target is determined by its initial velocity vector, and that of the defenders by the momentum and angle of release. All defenders are considered to be released immediately at the initial time of attack detection, as their release later may be noisy and de-mask the target for the attacker. The defenders are false targets (decoys). In fact, the task is to determine such trajectories of the defenders that the attacker first intercepts them and only then switches to pursuit of the main target. In this way, the time to intercept the primary target increases, and at some parameter values it may become unattainable for an attacker with limited energy resources. The study considers a model of the operation of the homing system of an autonomous attack vehicle based on proportional navigation, with the attacker first solving the problem of joint pursuit of targets, then circling the targets one by one. A software package was developed, numerical simulations were performed, and the optimal release angles of 3 defenders were determined for different target heading angles. For each of the cases considered, a solution was found in which the attacker lacks the energy resource to intercept the main target.References
Liu F., Dong X., Li Q., Ren Z. Cooperative differential games guidance laws for multiple attackers against an active defense target // Chinese Journal of Aeronautics. 2021. Vol. 35(11). P. 374–389. https://doi.org/10.1016/j.cja.2021.07.033.
Galdorisi G., Truver S. C. America (LHA-6) Class: Opportunities & Challenges // Naval Engineers Journal. 2020. Vol. 132. № 4. P. 71–83.
Jomon G., Sinchu, P., Kumar K., Santhanakrishnan T. Towed Acoustic Countermeas-ures for Defending Acoustic Homing Torpedoes // Defence science journal. 2019. Vol. 69, № 6. P. 607– 612. DOI: 10.14429/dsj.69.13337.
Zhan K., Yu B., Wang J. Simulations of the Anti-Torpedo Tactic of the Conventional Submarine Using Decoys and Jammers // Applied Mechanics and Materials. 2011. Vol. 65. P. 165–168. DOI: 10.4028/www.scientific.net/AMM.65.165.
Jomon G., Jojish J. V., Santhanakrishnan T. System of Systems Architecture for Generic Torpedo Defence System for Surface Ships // Advances in Military Technology. 2019. Vol. 14, № 2. P. 307–319. DOI: 10.3849/aimt.01330.
Pachter M., Garcia E., Casbeer D.W. Toward a Solution of the Active Target Defense Differential Game // Dyn Games Appl. 2019. Vol. 9. P. 165–216. DOI: 10.1007/s13235-018-0250-1. EDN: YVMEJV.
García E., Casbeer D., Pachter M. The Complete Differential Game of Active Target Defense // Journal of Optimization Theory and Applications. 2021. Vol. 191. P. 1–25. DOI: 10.1007/s10957-021-01816-z. EDN: PCQWLU.
Gong X., Chen W., Chen Z. Intelligent Game Strategies in Target-Missile-Defender Engagement Using Curriculum-Based Deep Reinforcement Learning // Aerospace. 2023. Vol. 10, № 2. Art. № 133. 21 P. DOI: 10.3390/aerospace10020133. EDN: WZLPIB.
English J. T., Wilhelm J. Defender-Aware Attacking Guidance Policy for the Target-Attacker-Defender Differential Game // Journal of Aerospace Information Systems. 2021. Vol. 18. № 6. P. 366–376. DOI: 10.2514/1.I010877. EDN: UOMOQV.
Rubinovich E.Ya. Missile-Target-Defender Problem with Incomplete a priori Information // Dynamic Games and Applications (Special Issue). 2021. Vol. 9. № 17. P. 851–857. DOI: 10.1007/s13235-019-00297-0.
Alkaher D., Moshaiov A. Game-Based Safe Aircraft Navigation in the Presence of Energy-Bleeding Coasting Missile // Journal of Guidance, Control, and Dynamics. 2016. Vol. 39. P. 1539–1550. DOI: 10.2514/1.G001676.
García E., Casbeer D. W., Pachter M. Active Target Defense Differential Game with a Fast Defender // IET Control Theory and Applications. 2017. Vol. 17, № 11. P. 2985–2993. DOI: 10.1049/ietcta.2017.0302.
Liu F., Dong X., Li Q., Ren Z. Cooperative differential games guidance laws for multiple attackers against an active defense target // Chinese Journal of Aeronautics. 2022. Vol. 35. P. 374–389. DOI: 10.1016/j.cja.2021.07.033. EDN: VOTPXS.
Liang H., Wang J., Liu J., Liu P. Guidance strategies for interceptor against active defense spacecraft in two-on-two engagement // Aerospace Science and Technology. 2020. Vol. 96, Art. № 105529. 10 P. DOI: 10.1016/j.ast.2019.105529. EDN: IZLTJI.
Zhou Z., Zhang W., Ding J., et al. Cooperative pursuit with Voronoi partitions // Automatica. 2016. Vol. 72. P. 64-72. DOI: 10.1016/j.automatica.2016.05.007.
Chen M., Zhou Z., Tomlin C.J. Multiplayer reach-avoid games via pairwise out-comes // IEEE Transactions on Automatic Control. 2017. Vol. 62, № 3. P. 1451–1457. DOI: 10.1109/TAC.2016.2577619.
Галяев А.А., Самохин А.С., Самохина М.А. Моделирование отсрочки поимки цели в ADT-игре с использованием одного или двух защитников // Проблемы управления. 2024. № 2. 83–94. DOI: 10.25728/pu.2024.2.7. EDN: GZFMGO.
García E., Casbeer D., Pham Kh., Pachter M. Cooperative Aircraft Defense from an Attacking Missile using Proportional Navigation // AIAA Guidance, Navigation, and Control Conference. Kissimmee, Florida, 2015. P. 2926–2931. DOI: 10.2514/6.2015-0337.
Girard A., Kabamba P. Proportional Navigation: Optimal Homing and Optimal Evasion // SIAM Review. 2015. Vol. 57 P. 611–624. DOI: 10.1137/13094730120.
Palumbo N., Blauwkamp R., Lloyd J. Modern Homing Missile Guidance Theory and Techniques // Johns Hopkins APL Technical Digest. 2010. Vol. 29, № 1. P. 42–59.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Александр Сергеевич Самохин

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are published under license Creative Commons Attribution 4.0 International (CC BY 4.0).
