NEURAL NETWORK RESPONSES TO USER REQUESTS: INTERPRETATION AND PERCEPTION FEATURES

Authors

DOI:

https://doi.org/10.17072/2218-1067-2025-1-100-111

Keywords:

neural networks, public opinion, political science, manipulation, trust in technology, algorithm bias, digital inequality, ethical responsibility, information security, adaptive algorithms, artificial intelligence, feedback

Abstract

The article explores the interaction of users with neural networks in a political context, focusing on their influence on the formation of public opinion and the interpretation of political events. The main purpose of the work is to identify the factors that determine the perception of neural network responses, including cognitive characteristics, cultural context, and the level of trust in technology. The study shows that despite the high functionality of neural networks, there are a number of problems associated with their adaptation to the audience, such as the bias of algorithms and insufficient transparency in response formation. Furthermore, this study pays special attention to the issue of user trust in neural network algorithms. The work offers recommendations for improving the efficiency of neural networks, including the development of adaptive algorithms and improving training data. In conclusion, important political challenges related to the manipulation of public opinion, the ethical responsibility of politicians, distrust of information, digital inequality, and threats to national security are highlighted. The problems identified emphasize the need for an interdisciplinary approach and the development of regulatory strategies that ensure the safe and ethical use of neural networks in public and political life, which is key to their effective use in the future.

Author Biographies

Aleksandr Sokolov, Yaroslavl State University named after P.G. Demidov, Russia.

Doctor of Political Sciences, Associate Professor, Head of the Department of Social and Political Theories

Ruslan Gabaydulin, Yaroslavl State University named after P.G. Demidov, Russia.

Postgraduate Student of the Department of Social and Political Theories

Nina Sukhonina, Yaroslavl State University named after P.G. Demidov, Russia.

Assistant of the Department of Social and Political Theories,

References

Блануца, В. И. (2020) ‘Государственная политика развития искусственного интеллекта в России: анализ стратегических целей’, Вестник Забайкальского государственного университета, 8, сс. 69–76. [Blanuca, V. I. (2020) ‘State policy for the development of artificial intelligence in Russia: analysis of strategic goals’ [Gosudarstvennaya politika razvitiya iskusstvennogo intellekta v Rossii: analiz strategicheskih celey], Vestnik Zabaykalskogo gosudarstvennogo universiteta, 8, рp. 69–76. (In Russ.)].

Воробьева, Е. (2023) ‘Специфика восприятия текста, написанного человеком и нейросетью’, Язык. Культура. Медиакоммуникация, 1, сс. 23–27. [Vorobyova, E. (2023) ‘The specifics of the perception of text written by a person and a neural network’ [Specifika vospriyatiya teksta, napisannogo chelovekom I neyrosetyu], Yazik. Kultura. Mediakommunikaciya, 1, рp. 23–27. (In Russ.)]. EDN: LFKLMQ

Жусип, М. Н., Жаксыбаев, Д. О. (2024) ‘Сравнение чат-ботов с использованием трансформеров и нейросетей: исследование применения архитектур GPT и BERT’, Вестник науки, 9, [online]. [Jusip, M. N., Jaksybaev, D. O. (2024) ‘Comparison of chatbots using transformers and neural networks: a study of the use of GPT and BERT architectures’ [Sravnenie chat-botov s ispolzovaniem transformerov I neyrosetey: issledovanie primeneniya arhitektur GPT i BERT], Vestnik nauki, 9, [Оnline] (In Russ.)]. Available at: https://cyberleninka.ru/

article/n/sravnenie-chat-botov-s-ispolzo¬vaniem-transformerov-i-neyrosetey-issledovanie-primeneniya-arhitektur-gpt-i-bert (Accessed 12 December 2024). EDN: DEXNMS

Карленок, Ю. А. (2019) ‘Применение нейронных сетей в экономике’, Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях: Материалы XXII Республиканской научной конференции студентов и аспирантов, сс. 371–373. [Karlenok, Y.A. (2019) ‘The use of neural networks in economics’ [Primenenie neyronnih setey v ekonomike], Novie matematicheskie metodi I kompyternie tehnologii v proektirovanii, proizvodstve I nauchnih issledovaniyah: Materiali XXII Respublikanskoy nauchnoy konferencii studentov I aspirantov, рp. 371–373. (In Russ.)].

Малыгина, Ю. П. (2018) ‘Нейронные сети: особенности, тенденции, перспективы развития’, Молодой исследователь Дона, [online]. [Malygina, Y. P. (2018) ‘Neural networks: features, trends, development prospects’ [Neyronnie seti: osobennosti, tendencii, perspektivi razvitiya], Molodoy issledovatel Dona, [Оnline] (In Russ.)]. Available at: https://cyber¬leninka.ru/article/n/neyronnye-seti-oso¬ben¬nosti-tendentsii-perspektivy-razvitiya (Accessed 12 December 2024).

Победин, П. К. (2022) ‘Цифровые технологии и искусственный интеллект в политическом прогнозировании, проектировании политических институтов и процессов’, Политконсультант, 1, сс. 1–8. [Pobedin, P. K. (2022) ‘Digital technologies and artificial intelligence in political forecasting, designing political institutions and processes’ [Cifrovie tehnologii I iskusstvenniy intellect v politicheskom prognozirovanii, proektirovanii politicheskih institutov I processov], Politkosultant, 1, рp. 1–8. (In Russ.)]. EDN: GITOSR

Рыбаков, Д. А. (2023) ‘Актуальность и доступность нейросетей в современном обществе’, Компьютерные и информационные науки: Вестник науки журн., [online]. [Rybakov, D.A. (2023) ‘Relevance and accessibility of neural networks in modern society’ [Aktualnost i dostupnost neyrosetey v sovremennom obschestve], Kompyuternie I informaci¬onnie nauki: Vestnik nauki jurn [online] (In Russ.)]. Available at: https://cyber-leninka.ru/article/n/aktualnost-i-dostup¬nost-neyrosetey-v-sovremen¬nom-ob¬schestve (Accessed 12 December 2024).

Angerschmid, A., Theuermann, K., Holzinger, A., Chen, F., Zhou, J. (2024) ‘Effects of Fairness and Explanation on Trust in Ethical AI’ in Machine Learning and Knowledge Extraction, рp. 51–67. DOI: 10.1007/978-3-031-14463-9_4

Chen, P., Wu, L., Wang, L. (2023) ‘AI Fairness in Data Management and Analytics: A Review on Challenges, Methodologies and Applications’, Applied Sciences, 13(18), [online]. Available at: https://www.mdpi.com/2076-3417/13/18/10258 (Accessed 12 December 2024).

Duenser, A., Douglas, D. (2023) ‘Who to Trust, How and Why: Untangling AI Ethics Princip¬les, Trustworthiness and Trust’ in IEEE In¬tel¬ligent Systems, рp. 1–8. DOI: 10.1109/MIS.2023.3322586 EDN: DPHVMD

Ferrara, E. (2024) ‘Fairness and Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, and Mitigation Strategies’, Sci, 6(1), [online]. Available at: https://www.mdpi.com/2413-4155/6/1/3 (Accessed 12 December 2024). DOI: 10.3390/sci6010003 EDN: XRHYWG

Hagendorff, T. (2024) ‘Mapping the Ethics of Generative AI: A Comprehensive Scoping Review’, Minds and Machines, 34(4), [online]. Available at: https://www.re¬search-gate.net/publication/384084343_Mapping_the_Ethics_of_Generative_AI_

A_Comprehensive_Scoping_Review (Accessed 12 December 2024). DOI: 10.1007/s11023-024-09694-w EDN: OUSHRX

Li, Y., Wu, B., Huang, Y., Luan, S. (2024) ‘Developing trustworthy artificial intelligence: insights from research on interpersonal, human-automation, and human-AI trust’, Frontiers in Psychology, 15. DOI: 10.3389/fpsyg.2024.1382693 EDN: XPRBCE

Mylrea, M., Robinson, N. (2023) ‘Artificial Intelligence (AI) Trust Framework and Maturity Model: Applying an Entropy Lens to Improve Security, Privacy, and Ethical AI’, Entropy, 25(10), [online]. Available at: https://www.mdpi.com/1099-4300/25/10/1429 (Accessed 12 December 2024).

Published

2025-04-04

How to Cite

Sokolov А. В., Gabaydulin Р. В., & Sukhonina Н. А. (2025). NEURAL NETWORK RESPONSES TO USER REQUESTS: INTERPRETATION AND PERCEPTION FEATURES . Bulletin of Perm University. Political Science, 19(1), 100–111. https://doi.org/10.17072/2218-1067-2025-1-100-111

Issue

Section

Political institutions, processes, technologies