NEURAL NETWORK RESPONSES TO USER REQUESTS: INTERPRETATION AND PERCEPTION FEATURES
DOI:
https://doi.org/10.17072/2218-1067-2025-1-100-111Keywords:
neural networks, public opinion, political science, manipulation, trust in technology, algorithm bias, digital inequality, ethical responsibility, information security, adaptive algorithms, artificial intelligence, feedbackAbstract
The article explores the interaction of users with neural networks in a political context, focusing on their influence on the formation of public opinion and the interpretation of political events. The main purpose of the work is to identify the factors that determine the perception of neural network responses, including cognitive characteristics, cultural context, and the level of trust in technology. The study shows that despite the high functionality of neural networks, there are a number of problems associated with their adaptation to the audience, such as the bias of algorithms and insufficient transparency in response formation. Furthermore, this study pays special attention to the issue of user trust in neural network algorithms. The work offers recommendations for improving the efficiency of neural networks, including the development of adaptive algorithms and improving training data. In conclusion, important political challenges related to the manipulation of public opinion, the ethical responsibility of politicians, distrust of information, digital inequality, and threats to national security are highlighted. The problems identified emphasize the need for an interdisciplinary approach and the development of regulatory strategies that ensure the safe and ethical use of neural networks in public and political life, which is key to their effective use in the future.References
Блануца, В. И. (2020) ‘Государственная политика развития искусственного интеллекта в России: анализ стратегических целей’, Вестник Забайкальского государственного университета, 8, сс. 69–76. [Blanuca, V. I. (2020) ‘State policy for the development of artificial intelligence in Russia: analysis of strategic goals’ [Gosudarstvennaya politika razvitiya iskusstvennogo intellekta v Rossii: analiz strategicheskih celey], Vestnik Zabaykalskogo gosudarstvennogo universiteta, 8, рp. 69–76. (In Russ.)].
Воробьева, Е. (2023) ‘Специфика восприятия текста, написанного человеком и нейросетью’, Язык. Культура. Медиакоммуникация, 1, сс. 23–27. [Vorobyova, E. (2023) ‘The specifics of the perception of text written by a person and a neural network’ [Specifika vospriyatiya teksta, napisannogo chelovekom I neyrosetyu], Yazik. Kultura. Mediakommunikaciya, 1, рp. 23–27. (In Russ.)]. EDN: LFKLMQ
Жусип, М. Н., Жаксыбаев, Д. О. (2024) ‘Сравнение чат-ботов с использованием трансформеров и нейросетей: исследование применения архитектур GPT и BERT’, Вестник науки, 9, [online]. [Jusip, M. N., Jaksybaev, D. O. (2024) ‘Comparison of chatbots using transformers and neural networks: a study of the use of GPT and BERT architectures’ [Sravnenie chat-botov s ispolzovaniem transformerov I neyrosetey: issledovanie primeneniya arhitektur GPT i BERT], Vestnik nauki, 9, [Оnline] (In Russ.)]. Available at: https://cyberleninka.ru/
article/n/sravnenie-chat-botov-s-ispolzo¬vaniem-transformerov-i-neyrosetey-issledovanie-primeneniya-arhitektur-gpt-i-bert (Accessed 12 December 2024). EDN: DEXNMS
Карленок, Ю. А. (2019) ‘Применение нейронных сетей в экономике’, Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях: Материалы XXII Республиканской научной конференции студентов и аспирантов, сс. 371–373. [Karlenok, Y.A. (2019) ‘The use of neural networks in economics’ [Primenenie neyronnih setey v ekonomike], Novie matematicheskie metodi I kompyternie tehnologii v proektirovanii, proizvodstve I nauchnih issledovaniyah: Materiali XXII Respublikanskoy nauchnoy konferencii studentov I aspirantov, рp. 371–373. (In Russ.)].
Малыгина, Ю. П. (2018) ‘Нейронные сети: особенности, тенденции, перспективы развития’, Молодой исследователь Дона, [online]. [Malygina, Y. P. (2018) ‘Neural networks: features, trends, development prospects’ [Neyronnie seti: osobennosti, tendencii, perspektivi razvitiya], Molodoy issledovatel Dona, [Оnline] (In Russ.)]. Available at: https://cyber¬leninka.ru/article/n/neyronnye-seti-oso¬ben¬nosti-tendentsii-perspektivy-razvitiya (Accessed 12 December 2024).
Победин, П. К. (2022) ‘Цифровые технологии и искусственный интеллект в политическом прогнозировании, проектировании политических институтов и процессов’, Политконсультант, 1, сс. 1–8. [Pobedin, P. K. (2022) ‘Digital technologies and artificial intelligence in political forecasting, designing political institutions and processes’ [Cifrovie tehnologii I iskusstvenniy intellect v politicheskom prognozirovanii, proektirovanii politicheskih institutov I processov], Politkosultant, 1, рp. 1–8. (In Russ.)]. EDN: GITOSR
Рыбаков, Д. А. (2023) ‘Актуальность и доступность нейросетей в современном обществе’, Компьютерные и информационные науки: Вестник науки журн., [online]. [Rybakov, D.A. (2023) ‘Relevance and accessibility of neural networks in modern society’ [Aktualnost i dostupnost neyrosetey v sovremennom obschestve], Kompyuternie I informaci¬onnie nauki: Vestnik nauki jurn [online] (In Russ.)]. Available at: https://cyber-leninka.ru/article/n/aktualnost-i-dostup¬nost-neyrosetey-v-sovremen¬nom-ob¬schestve (Accessed 12 December 2024).
Angerschmid, A., Theuermann, K., Holzinger, A., Chen, F., Zhou, J. (2024) ‘Effects of Fairness and Explanation on Trust in Ethical AI’ in Machine Learning and Knowledge Extraction, рp. 51–67. DOI: 10.1007/978-3-031-14463-9_4
Chen, P., Wu, L., Wang, L. (2023) ‘AI Fairness in Data Management and Analytics: A Review on Challenges, Methodologies and Applications’, Applied Sciences, 13(18), [online]. Available at: https://www.mdpi.com/2076-3417/13/18/10258 (Accessed 12 December 2024).
Duenser, A., Douglas, D. (2023) ‘Who to Trust, How and Why: Untangling AI Ethics Princip¬les, Trustworthiness and Trust’ in IEEE In¬tel¬ligent Systems, рp. 1–8. DOI: 10.1109/MIS.2023.3322586 EDN: DPHVMD
Ferrara, E. (2024) ‘Fairness and Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, and Mitigation Strategies’, Sci, 6(1), [online]. Available at: https://www.mdpi.com/2413-4155/6/1/3 (Accessed 12 December 2024). DOI: 10.3390/sci6010003 EDN: XRHYWG
Hagendorff, T. (2024) ‘Mapping the Ethics of Generative AI: A Comprehensive Scoping Review’, Minds and Machines, 34(4), [online]. Available at: https://www.re¬search-gate.net/publication/384084343_Mapping_the_Ethics_of_Generative_AI_
A_Comprehensive_Scoping_Review (Accessed 12 December 2024). DOI: 10.1007/s11023-024-09694-w EDN: OUSHRX
Li, Y., Wu, B., Huang, Y., Luan, S. (2024) ‘Developing trustworthy artificial intelligence: insights from research on interpersonal, human-automation, and human-AI trust’, Frontiers in Psychology, 15. DOI: 10.3389/fpsyg.2024.1382693 EDN: XPRBCE
Mylrea, M., Robinson, N. (2023) ‘Artificial Intelligence (AI) Trust Framework and Maturity Model: Applying an Entropy Lens to Improve Security, Privacy, and Ethical AI’, Entropy, 25(10), [online]. Available at: https://www.mdpi.com/1099-4300/25/10/1429 (Accessed 12 December 2024).
Downloads
Published
How to Cite
Issue
Section
License
The author grants the Publisher of the journal (Perm State University) the right to use their article in the journal, as well as to include the text of the abstract, the full text of the article and information about authors in the "Russian Science Citation Index" (RSCI).
The author agrees to the processing of personal data.
The right to use the journal as a whole belongs to the Publisher and acts indefinitely on the territory of the Russian Federation and beyond in accordance with cl. 1260 of the Russian Federation Civil Code.
There is no author's fee paid for providing the above rights by the author.
The author of the article included in the journal retains the exclusive right to it, regardless of the Publisher's right to use the journal as a whole:
a. The authors retain their copyrights to the article and transfer the right of the first publication along with the article to the journal, while also licensing it on the terms of the Creative Commons Attribution License, which allows others to distribute this article with the obligatory indication of authorship of the article and reference to the original publication in this journal.
b. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive dissemination of the version of the text published by this journal (for example, post it in a university archive or publish it in a book), with reference to the original publication in this journal.
c. d. Authors are allowed to post their text on the Internet (for example, in a university archive or on their personal website) before and during the review process by this journal, as this can lead to a fruitful discussion and to higher number of the references to this published work (Please refer to The Effect of Open Access).
Submission of an article by the author implies that they agree for it to be used by the Publisher on the above conditions and to be included in the RSCI system. It also implicates that the author is aware of the terms of its use. The information about the author sent to the Publisher, including by e-mail, is also considered as such consent.
The editorial board posts the full text of the article on the Perm State University site: http://www.psu.ru and in the OJS system at http://press.psu.ru
The publication fee is not collected and fees are not paid. The author's copy is sent to the author to the address provided by them.