Ferromagnetic resonance in a suspension of nanoparticles with uniaxial anisotropy

Authors

  • Игорь Сергеевич Поперечный (Igor S. Poperechny) Institute of Continuous Media Mechanics UB RAS; Perm National Research Polytechnic University
  • Юрий Львович Райхер (Yuriy L. Raikher) Institute of Continuous Media Mechanics UB RAS
  • Виктор Иванович Степанов (Victor I. Stepanov) Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.17072/1994-3598-2016-3-05-11

Abstract

A kinetic theory of ferromagnetic resonance in a suspension of nanoparticles with uniaxial anisotropy of arbitrary strength is proposed. The presented approach explicitly takes into account thermal fluctuations of magnetic moment for the dispersed particles and specifies the orientational distribution function of their anisotropy axes at any external field and temperature. The developed theory is used for studying the high-frequency response of a magnetic fluid at different temperatures. It is shown that in a certain temperature interval the absorption line splits into two components. The resonance field, corresponding to the first one, is almost temperature-independent and close to the value for an isotropic magnet. The second component appears only at reduced temperatures, when orientational texturing of the suspension occurs due to the action of magnetizing field. As the temperature of the system goes down, that latter component shifts towards lower fields. The width of this interval is essentially dependent on the magnitude of the particle anisotropy and the precession damping constant.Received 12.09.2016; accepted 04.10.2016

References

Hosokawa M., Nogi K., Naito M., Yokoyama T. (Eds.) Nanoparticle Technology Handbook. Amsterdam: Elsevier, 2012. 730 p.

Poperechny I. S., Raikher Yu. L. Ferromagnetic resonance in uniaxial superparamagnetic particles. Physical Review B, 2016, vol. 93, 014441.

Fannin P. C., Marin C. N., Raj K., Couper C., Barvinsch P. An experimental study of the dynamic properties of nanoparticle colloids with identical magnetization but different particle size. Journal of Magnetism and Magnetic Materials, 2012, vol. 324, pp. 3443–3447.

Noginova N., Chen F., Weaver T., Giannelis E. P., Bourlinos A. B., Atsarkin V. A. Magnetic resonance in nanoparticles: between ferro- and paramagnetism. Journal of Physics: Condensed Matter, 2007, vol. 19, 246208.

Noginov M. M., Noginova N., Amponsah O., Bah R., Rakhimov R., Atsarkin V. A. Magnetic resonance in iron oxide nanoparticles: Quantum features and effect of size. Journal of Magnetism and Magnetic Materials, 2008, vol. 320, pp. 2228–2232.

Novoselova J. P., Safronov A. P., Samatov O. M., Beketov I. V., Khurshid H., Nemati Z., Strikanth H., Denisova T. P., Andrade R., Kurlyandskaya G. V. Laser Target Evaporation Fe2O3 Nanoparticles for Water-Based Ferrofluids for Biomedical Applications. IEEE Transactions on Magnetics, 2014, Vol. 50, 4600504.

Shankar A., Chand M., Kumar S., Singh V. N., Basheed G. A., Thakur S., Pant R. P. Spin resonance investigations on water-based magnetite ferrofluid. Magnetohydrodynamics, 2013, vol. 49, pp. 310–316.

Raikher Yu. L., Stepanov V. I. Ferromagnetic resonance in a suspension of single-domain particles. Physical Review B, 1994, vol. 50, pp. 6250–6259.

Brown W. F. Thermal fluctuations of a single-domain particle. Physical Review, 1963, vol. 130, pp. 1677–1686.

Published

2017-03-04

How to Cite

Поперечный (Igor S. Poperechny) И. С., Райхер (Yuriy L. Raikher) Ю. Л., & Степанов (Victor I. Stepanov) В. И. (2017). Ferromagnetic resonance in a suspension of nanoparticles with uniaxial anisotropy. Bulletin of Perm University. Physics, (3(34). https://doi.org/10.17072/1994-3598-2016-3-05-11

Issue

Section

Regular articles