Description of the macroscopic dynamics of populations of phase elements with white non-Gaussian noise based on the circular cumulant approach
DOI:
https://doi.org/10.17072/1994-3598-2021-3-05-12Abstract
We use the method of circular cumulants, which allows us to construct a low-mode macroscopic description of the dynamics of populations of phase elements subject to non-Gaussian white noise. In this work, we have obtained two-cumulant reduced equations for alpha-stable noise. The application of the approach is demonstrated for the case of the Kuramoto ensemble with non-Gaussian noise. The results of numerical calculations for the ensemble of N = 1500 elements, the numerical simulation of the chain of equations for the Kuramoto–Daido order parameters (Fourier modes of the probability density) with 200 terms (in the thermodynamic limit of an infinitely large ensemble) and the theoretical solution on the basis of the two-cumulant approximation are in good agreement with each other.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bulletin of Perm University. Physics
This work is licensed under a Creative Commons Attribution 4.0 International License.
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.