Regularization models for natural convection of a pseudoplastic liquid in a closed differentially heated cavity

Authors

  • Daria S. Loenko Tomsk State University
  • Mikhail A. Sheremet Tomsk State University

DOI:

https://doi.org/10.17072/1994-3598-2021-3-13-22

Keywords:

естественная конвекция, неньютоновская псевдопластичная жидкость, регуляризация эффективной вяз-кости, замкнутая полость, дифференциальный обогрев

Abstract

Simulation of convective heat and mass transfer in systems filled with pseudoplastic fluids deals with computational difficulties due to the appearance of an infinite level of effective viscosity as the intensity of deformation rates tends to zero. To solve this problem, various regularization models are used by introducing a small additional term into the expression for the effective viscosity. The present research is devoted to analysis of widespread regularization models for studying the natural convection of a pseudoplastic fluid in a closed differentially heated cavity. The pseudoplastic nature of the fluid flow was described by the Ostwald-de Waele power law. Three regularization models were investigated, namely, the simplest algebraic model, the Bercovier and Engleman model, and the Papanastasiou model. The boundary value problem of mathematical physics formulated using the conservation laws of mass, momentum and energy, was solved by the finite difference method. The obtained results were compared with data of other authors.

Author Biography

Mikhail A. Sheremet, Tomsk State University

доктор физико-математических наук, доцент заведующий лабораторией моделирования процессов конвективного тепломассопереноса

References

Duvant G., Lions J. L. Inequalities in Mechanics and Physics. Berlin: Springer-Verlag Berlin Hei-delberg, 1976. 400 p.

Glowinski R., Lions J. L., Trémolières R. Analyse numérique des inéquations variationnelles: Appli-cations aux phénomènes stationnaires et d'évolu-tion. Paris: Dunod, 1976. 290 p.

Allouche M., Frigaard I. A., Sona G. Static wall layers in the displacement of two visco-plastic fluids in a plane channel // J. Fluid Mech. 2000. Vol. 424. P. 243–277.

Bercovier M., Engleman M. A finite-element method for incompressible non-Newtonian flows // Journal of Computational Physics. 1980. Vol. 36. P. 313–326.

Engleman M. S., Moskowitz S., Borman J. Com-puter simulation: A diagnostic method in compara-tive studies of valve prostheses // The Journal of Thoracic and Cardiovascular Surgery. 1980. Vol. 79. N. 3. P. 402–412.

Papanastasiou T. Flows of materials with yield // Journal of Rheology. 1978. Vol. 31. P. 385–404.

Lipscomb G. G., Denn M. M. Flow of bingham flu-ids in complex geometries // Journal of Non-Newtonian Fluid Mechanics. 1984. Vol. 14. P. 337–346.

O’Donovan E. J., Tanner R. I. Numerical study of the Bingham squeeze film problem // Journal of Non-Newtonian Fluid Mechanics. 1984. Vol. 15. N. 1. P. 75–83.

Walton I. C., Bittleston S. H. The axial flow of a Bingham plastic in a narrow eccentric annulus // Journal of Fluid Mechanics. 1991. Vol. 222. P. 39–60.

Abdali S. S., Mutsoulis E. Entry and exit flows of Bingham fluids // Journal of Rheology. 1992. Vol. 36. P. 389–407.

Li M.-G., Feng F., Wu W.-T., Massoudi M. Nu-merical simulations of the flow of a dense suspen-sion exhibiting yield-stress and shear-thinning ef-fects // Energies. 2020. Vol. 13. N. 24, 6635.

Tran-Duc Th., Ho Th., Thamwattana Ng. A smoothed particle hydrodynamics study on effect of coarse aggregate on self-compacting concrete flows // International Journal of Mechanical Sci-ences. 2021. Vol. 190, 106046.

Deka H., Pierson J.-L., Soares E. J. Retraction of a viscoplastic liquid sheet // Journal of Non-Newtonian Fluid Mechanics. 2019. Vol. 272, 104172.

Ghazal A., Karimfazli I. On the hydrodynamics of off-bottom plug placement: A 2D model problem // Journal of Petroleum Science and Engineering. 2021. Vol. 203, 108613.

Banerjee A., Lavrenteva O. M., Smagin I., Nir A. Deformation of an axisymmetric viscoplastic drop in extensional/compressional flow // Journal of Non-Newtonian Fluid Mechanics. 2021. Vol. 292, 104534.

Zamankhan P., Takayama Sh., Grotberg J. B. Steady displacement of long gas bubbles in chan-nels and tubes filled by a Bingham fluid // Phys Rev Fluids. 2018. Vol. 3. N. 1, 013302.

Mishra G., Chhabra R.P. Influence of flow pulsa-tions and yield stress on heat transfer from a sphere // Applied Mathematical Modelling. 2021. Vol. 90. P. 1069–1098.

Mitsoulis E., Tsamopoulos J. Numerical simula-tions of complex yield-stress fluid flows // Rheol Acta. 2017. Vol. 56. P. 231–258.

Ahmadi A., Karimfazli I. A quantitative evaluation of viscosity regularization in predicting transient flows of viscoplastic fluids // Journal of Non-Newtonian Fluid Mechanics. 2021. Vol. 287, 104429.

Борзенко Е. И., Шрагер Г. Р. Структура течения вязкопластичной жидкости при заполнении круглой трубы/плоского канала // Вычисли-тельная механика сплошных сред. 2019. Том 12(2). С. 129-136.

Lin Ch.-Ch., Yang F.-L. Continuum simulation for regularized non-local μ(I) model of dense granular flows // Journal of Computational Physics. 2020. Vol. 420, 109708.

Khezzar L., Siginer D., Vinogradov I. Natural con-vection of power law fluids in inclined cavities // International Journal of Thermal Sciences. 2012. Vol. 53. P. 8–17.

Loenko D., Shenoy A., Sheremet M. Influence of the chamber inclination angle and heat-generating element location on thermal convection of power-law medium in a chamber // International Journal of Numerical Methods for Heat & Fluid Flow. 2021. Vol. 31, N. 1. P. 134–153.

Loenko D., Shenoy A., Sheremet M. Natural con-vection of non-Newtonian power-law fluid in a square cavity with a heat-generating element // En-ergies. 2019. Vol. 12, 2149.

Loenko D., Shenoy A., Sheremet M. Effect of time-dependent wall temperature on natural convection of a non-Newtonian fluid in an enclosure // Interna-tional Journal of Thermal Sciences. 2021. Vol. 166, 106973.

Лоенко Д. С., Шеремет М. А. Конвективный теплоперенос степенной жидкости в полости с источником энергии нестационарного объемно-го тепловыделения // Вестник Пермского уни-верситета. Физика. 2019. № 4. С. 44–50.

Лоенко Д. С., Шеремет М. А. Численное моде-лирование естественной конвекции неньюто-новской жидкости в замкнутой полости // Ком-пьютерные исследования и моделирование. 2020. Т. 12. № 1. P. 59–72.

Sojoudi A., Saha S. C., Gu Y. T., Hossain M. A. Steady natural convection of non-Newtonian power-law fluid in a trapezoidal enclosure // Ad-vances in Mechanical Engineering. 2013. Vol. 5. P. 1–8.

Turan O., Sachdeva A., Chakraborty N., Poole R. J. Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures // Journal of Non-Newtonian Fluid Mechanics. 2011. Vol. 166. P. 1049–1063.

Published

2021-10-26

How to Cite

Loenko Д., & Sheremet М. (2021). Regularization models for natural convection of a pseudoplastic liquid in a closed differentially heated cavity. Bulletin of Perm University. Physics, (3), 13–22. https://doi.org/10.17072/1994-3598-2021-3-13-22

Issue

Section

Regular articles