Magneto-orientation response of ferronematic with a tilted orientation of the director and magnetization

Authors

  • Данил Александрович Петров (Danil A. Petrov) Perm State University
  • Рифат Рифхатович Ханнанов (Rifat R. Khannanov) Perm State University

DOI:

https://doi.org/10.17072/1994-3598-2021-2-48-58

Keywords:

liquid crystal, ferronematic, orientational transitions, magnetic particles

Abstract

The article considers orientational transitions induced by a magnetic field in a highly dispersed suspension of ferromagnetic particles in a nematic liquid crystal – ferronematic. We research the case when, in the absence of an external magnetic field between the directions of the liquid crystal director and magnetization of the impurity particles, a constant pretilt angle is maintained, and the coupling of the liquid crystal molecules to the surface of the ferroparticles is assumed to be soft and planar. An example of such an impurity is ferromagnetic carbon nanotubes magnetized at a certain angle to their long axes. On the basis of the continuum theory, the equilibrium values of the orientation angles of the liquid crystal director and magnetization are calculated for different values of the pretilt angle. The results of calculations are compared with the previously considered case of planar coupling between the director and magnetization. Analytical expressions are obtained for determining the orientational and magnetic structure of the ferronematic in the case of weak magnetic fields. The magnetization of the ferronematic is studied for different values of the pretilt angle.

References

Bisoyi H. K., Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chemical Society Reviews, 2011, vol. 40, pp. 306–319. DOI: 10.1039/b901793n

Draper M., Saez I. M., Cowling S. J., Gai P., Heinrich B., Donnio B., Guillon D., Goodby J. W. Self-Assembly and Shape Morphology of Liquid-Crystalline Gold Metamaterials. Advanced Functional Materials, 2011, vol. 21, pp. 1260–1278. DOI: 10.1002/adfm.201001606

Stamatoiu O., Mirzaei J., Feng X., Hegmann T. Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles. Topics in Current Chemistry, 2012, vol. 318, pp. 331–394. DOI: 10.1007/128_2011_233

Lisetski L., Soskin M., Lebovka N. Carbon Nanotubes in Liquid Crystals: Fundamental Properties and Applications. Physics of Liquid Matter: Modern Problems, Springer Proceedings in Physics, 2015, vol. 171, pp. 243–297. DOI: 10.1007/978-3-319-20875-6_10

Reznikov Y., Glushchenko A., Garbovskiy Y. Ferromagnetic and ferroelectric nanoparticles in liquid crystals / In: Lagerwall P. F. J., Scalia G. (Ed.) Liquid Crystals with Nano and Microparticles. World Scientific Publishing Co., 2016, pp. 657–693.

DOI: 10.1142/9789814619264_0019

Yadav S. P., Singh S. Carbon Nanotube Dispersion in Nematic Liquid Crystals: An Overview. Progress in Materials Science, 2016, vol. 80, pp. 38–76. DOI: 10.1016/j.pmatsci.2015.12.002

Muševic I. Nematic Liquid-Crystal Colloids. Materials, 2018, vol. 11, no. 1, 24. DOI: 10.3390/ma11010024

Ingo Dierking. From colloids in liquid crystals to colloidal liquid crystals. Liquid Crystals, 2019, vol. 46, no. 13–14, pp. 2057–2074. DOI: 10.1080/02678292.2019.1641755

Chang C., Zhao Y., Liu Y., An L. Liquid crystallinity of carbon nanotubes. RSC Advances, 2018, vol. 8, no. 28, pp. 15780–15795. DOI: 10.1039/c8ra00879e

Chausov D.N., Kurilov A.D., Belyaev V.V. Liquid crystal nanocomposites doped with rare earth elements. Liquid Crystals and their Application, 2020, vol. 20, no. 2, pp. 6–22. DOI: 10.18083/LCAppl.2020.2.6 (in Russian)

Brochard F., de Gennes P. G. Theory of magnetic suspensions in liquid crystals. Journal de Physique, 1970, vol. 31, no. 7, pp. 691–708. DOI: 10.1051/jphys:01970003107069100

Podoliak N., Buchnev O., Buluy O., Giampaolo D’Alessandro, Kaczmarek M., Reznikov Y., Sluckin T. J. Macroscopic optical effects in low concentration ferronematics. Soft Matter, 2011, vol. 7, no. 10, pp. 4742–4749. DOI: 10.1039/c1sm05051f

Burylov S., Petrov D., Lacková V., Zakutanská K., Burylova N., Voroshilov A., Skosar V., Agresti F., Kopčanský P., Tomašovičová N. Ferromagnetic and antiferromagnetic liquid crystal suspensions: Experiment and theory. Journal of Molecular Liquids, 2021, vol. 321, 114467. DOI: 10.1016/j.molliq.2020.114467

Liu Q., Ackerman P. J., Lubensky T. C., Smalyukh I. I. Biaxial ferromagnetic liquid crystal colloids. Proceedings of the National Academy of Sciences, 2016, vol. 113, pp. 10479–10484. DOI: 10.1073/pnas.1601235113

Zakhlevnykh A. N., Petrov D. A. Weak coupling effects and reentrant transitions in ferronematic liquid crystals. Journal of Molecular Liquids, 2014, vol. 198, pp. 223–233. DOI: 10.1016/j.molliq.2014.06.028

Makarov D. V., Zakhlevnykh A. N. Tricritical phenomena at the Fréedericksz transition in ferronematic liquid crystals. Physical Review E, 2010, vol. 81, no. 5, 051710. DOI: 10.1103/PhysRevE.81.051710

Porte G., Jadot J. P. A phase transition-like instability in static samples of twisted nematic liquid crystal when the surfaces induce tilted alignments. Journal de Physique, 1978, vol. 39, no. 2, pp. 213–223. DOI: 10.1051/jphys:01978003902021300

Blinov L. M., Chigrinov V. G. Electrooptic Effects in Liquid Crystal Materials. New York: Springer-Verlag, 1994. 464 p. DOI: 10.1007/978-1-4612-2692-5

Buluy O., Nepijko S., Reshetnyak V., Ouskova E., Zadorozhnii V., Leonhardt A., Ritschel M., Schöonhense G., Reznikov Y. Magnetic sensitivity of a dispersion of aggregated ferromagnetic carbon nanotubes in liquid crystals. Soft Matter, 2011, vol. 7, no. 2, pp. 644–649. DOI: 10.1039/C0SM00131G

Komogortsev S. V., Iskhakov R. S., Balaev A. D., Kudashov A. G., Okotrub A. V., Smirnov S. I. Magnetic properties of Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes. Physics of the Solid State, 2007, vol. 49, pp. 734–738. DOI: 10.1134/S1063783407040233

Lynch M. D., Patrick D. L. Organizing carbon nanotubes with liquid crystals. Nano Letters, 2002, vol. 2, no. 11, pp. 1197–1201. DOI: 10.1021/nl025694j

Jeong H. S., Youn S. Ch., Kim Y. H., Jung H.-T. Orientation control of liquid crystals using carbon-nanotube–magnetic particle hybrid materials. Physical Chemistry Chemical Physics, 2013, vol. 15, no. 24, pp. 9493-9497. DOI: 10.1039/C3CP00052D

Scalia G. Alignment of Carbon Nanotubes in Thermotropic and Lyotropic Liquid Crystals. ChemPhysChem, 2010, vol. 11, no. 2, pp. 333–340. DOI: 10.1002/cphc.200900747

Burylov S. V., Raikher Yu. L. Macroscopic properties of ferronematics caused by orientational interactions on the particle surfaces. II. Behavior of real ferronematics in external fields. Molecular Crystals and Liquid Crystals, 1995, vol. 258, pp. 123–141. DOI: 10.1080/10587259508034553

Kopčanský P., Tomašovičová N., Timko M., Koneracká M., Závišová V., Tomčo L. and Jadzyn J. The sensitivity of ferronematics to external magnetic fields // Journal of Physics: Conference Series, 2010, vol. 200, 072055. DOI: 10.1088/1742-6596/200/7/07205

Published

2021-06-28

How to Cite

Петров (Danil A. Petrov) Д. А., & Ханнанов (Rifat R. Khannanov) Р. Р. (2021). Magneto-orientation response of ferronematic with a tilted orientation of the director and magnetization. Bulletin of Perm University. Physics, (2). https://doi.org/10.17072/1994-3598-2021-2-48-58

Issue

Section

Regular articles

Most read articles by the same author(s)