Fiber-optic gyroscope with a phase information signal

Authors

  • Виталий Михайлович Афанасьев (Vitaliy M. Afanas'ev) Kolomna Institute of Moscow Polytechnic University
  • Роман Сергеевич Пономарев (Roman S. Ponomarev) Perm State University; Perm Federal Research Center UB RAS

DOI:

https://doi.org/10.17072/1994-3598-2021-2-23-35

Keywords:

fiber-optic gyroscope, the driver of the modulating signal, signal spectrum, digital measuring instrument of a difference phases.

Abstract

A review of the methods of obtaining and processing the VOG signal is carried out. A gyroscope with the formation of a phase information signal in an interference loop (at the optical level) is proposed. The analysis of digital phase difference meters is carried out. The advantages of a gyroscope with a phase information signal and digital signal processing are the linearity of the scale factor, an increase in the dynamic range and a reduction in the influence of external factors on the measurement result.

References

Lefevre H. C. The fiber-optic gyroscope: Achievement and perspective. Gyroscopes and Navigation. 2012, vol. 3 (4), pp. 223–226.

Lefevre H. The Fiber-optic gyroscope, Artech House, 2014, 405 p.

Korkishko Yu.N., Fedorov V.A., Prilutsky V.E., Ponomarev V.G., Moreva I.V., Skripnikov S.F. and others. Strapdown inertial navigation systems based on fiber-optic gyroscopes. Gyroscopy and Navigation. 2014. № 1 (84). pp. 14-25

Borodina E. V., Gabbasov A. F., Parfenov A. N., Fomin M. R. Research results of the fiber-optic gyro. Proc. of The Tula State University. Technical science, 2019, no. 8. pp. 46–52

Kurbatov A. M. New methods of improving fogs with open and closed loops. Gyroscopes and Navigation. 2015. № 1 (88). pp.43-60. DOI 10.17285/0869-7035.2015.23.1.043-060.

Krobka N. I., Gerdi V. N., Scherbitsky D. S., Goryachkin A. M. A method of extending the scope of open-loop fiber-optic gyroscopes. Radiotekhnika. Dynamics of complex systems. 2017, vol. 11, no. 3, pp. 22–26 (In Russian)

Kurbatov A. M., Kurbatov R. A., Goryachkin A. M. Fiber-optic gyroscope accuracy improvement by suppressing the parasitic effects in integrated optic. phase-shift modulators, Gyroscopes and Navigation, 2019, vol. 27, no. 2 (105), pp. 52–69. DOI: 10.17285/0869-7035.2019.27.2.052-069

Listvin V., Logozinskyi V., Miniature fiber-optic torque transducers. Design, technology, characteristics. ELECTRONICS: Science, Technology, Business. 2006. no. 8(74). pp. 72–77.

Logozinskyi V., Safutin I., Solomatin V. Fiber-optic rotation sensor with digitally corrected output. Gyroscopes and Navigation, 2001, no. 3 (34), pp. 93-102

Smallest Fiber Optic Gyros. “Fizoptika” FOGs [Electronic resource]. URL: https://fizoptika.com (access date 27.11.2020)

Production company “Optolink”. Single axis fiber-optic gyroscopes. Integrated optical components [Electronic resource]. URL: https://optolink.ru (access date 27.11.2020)

Device OIUS 1000 PNSK Operating instructions [Electronic resource]. URL: https://scribd.com/ document/446547304/Device-OIUS-1000 (ac-cess date 27.11.2020).

PJSC Perm scientific and production instrument-making company, 2008-2020. Gyrocompasses and navigation systems. URL: http:// pnppk.ru (access date 09.11.2020).

Integrated Optical Circuit for FOG. Fiber Coil for FOG. URL: http:// pnppk.ru (access date 09.11.2020).

Antonova M.V., Borodulin D.S., Volyntsev A.A., Kovaleva E.Yu., Novikov L.Z., Tereshkin A.I., Zhegalin I.I. Modular Configurated Design of Strapdown Inertial Units. Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics, 2015, vol. 15, no. 4, pp. 101–110. (in Russ.) DOI: 10.14529/ctcr150411

Blazhkov B. A., Volynsky D. V., Rupasov A.V., Stepanov A. P., Untilov A. A. High-precision fiber-optic gyroscopes. Current state and devel-opment prospects. Proc. of ХIII All-Russian meeting on control issues. Moscow, 17–20 June 2019, pp. 1330-1335 [Electronic resource]. URL: https://vspu2019.ipu.ru/files/Proceedings/1330.pdf (access date 14.11.2020)

Kim B. Y., Shaw H. J. All- fiber-optic gyroscope with linear scale factor using phase detection. Fiber Optic and Laser Sensors ,1984, vol. 478, pp. 142–148.

Y-JPX-LN – Integrated optical circuit for FOG [Electronic resource]. URL: http:// sphotonics.ru (access date 23.05.2020).

Measuring the phase difference F2-41. User manual [Electronic resource]. URL: http://www.npkmera.ru/i/doc/Ф2-41.pdf (access date 01.11.2020).

The phase meter Model 6000A firms CLARKE-HESS. [Electronic resource]. URL: http://www.vltest.ru/catalog…izmeritelnoe…izmeriteli-fazy/ (access date 01.11.2020).

Emge S., Monte T., Brunner J., Rossi J., Miller R., Ganesan K. Advances in open-loop FOG sensors. KVH Industries, Inc., 2006. P. 3–8

DSP-3000 FOG High-performance, single-axis fiber optic gyro [Electronic resource]. URL: https:// canalgeomatics.com› …content…2019/11…dsp-3000-fog… (access date 14.11.2020).

Pestunov A. N., Kovaleva E. V. Development of angular velocity measurement channel based on digital fiber-optic gyroscope. Rocket-Space De-vice Engineering and Information Systems. 2017. V. 4. № 1. P.78-83. DOI 10.17238/issn2409-0239.2017.1.78

Fiber optic gyroscope [Electronic resource]. URL: http://www.bwsensing.com›product-7.html (access date 30.11.2020).

China optic gyroscope factories [Electronic resource]. URL: http://www.ecer.com›china-optic-gyroscope (access date 30.11.2020).

Voronov A. S. Measuring the phase difference of signals. Horizons of Education, 2007, №. 9, pp. 1–2 (In Russian).

Damdinova D. B., Poletaev A. S., Chensky A. G. Accuracy comparison of methods for measuring a phase shift of quasi-harmonic signals. Bulletin of SibGUTI, 2016, no. 2, pp. 87–97.

Bernikov B. O., Bokshansky V. B., Vyazov M. V., Fedorov S. V. Methods for improving the accuracy of distance measurement in laser phase range finders. Bulletin of the Bauman Moscow state technical University. Series: Instrument making. 2012. рр. 132–142.

Ignat'ev V. K., Nikitin A. V., Bernardo-Saprykin V. H., Orlov A. A. Measuring phase difference of quasi-harmonic signals in real time. Science and Education, 2013, no. 7, рр. 241–256. DOI: 10.7463/0713.0588392. URL: http:// technomag.bmstu.ru /doc/588392.html (access date: 25.11.2020)

Zhmud V. А., Semibalamut V. M., Dimitrov L. V. Improving the accuracy and reliability of measuring the phase difference. Automatics and Software Engineering, 2017, no. 1 (19), pp. 83–96 (In Russian).

Zhmud V.A., Liapidevsky V.M., Dimitrov L.V. Additional increase in the accuracy of measuring the phase difference by secondary synchronization of samples of the difference frequency. Automatics and Software Engineering, 2017, no. 1 (19), pp. 97–107 (In Russian).

Merlo S., Norgle M., Donati V. Fiber gyroscope principles. Electrooptics Group University of Pavia, Italy [Electronic resource]. URL: http://www.3.unipv.it/donati/papers/2c.pdf (ac-cessed 18.12.2020)

Papyrina E.Y., Volkhin I. L., Nikulin K. V. Gyro-compass primary data processing device modernization. Bulletin of Perm University. Physics, 2019, no. 3, pp. 45–51 (In Russian). DOI: 10.17072/1994-3598-2019-3-45-51

Starikov S. S., Kel O. L., Volkhin I. L. Noise measurement of fiber-optical radiation sources. Bulletin of Perm University. Physics, 2019, no. 1, pp. 66–73 (In Russian). DOI: 10.17072/1994-3598-2019-1-66-73

Published

2021-06-28

How to Cite

Афанасьев (Vitaliy M. Afanas’ev) В. М., & Пономарев (Roman S. Ponomarev) Р. С. (2021). Fiber-optic gyroscope with a phase information signal. Bulletin of Perm University. Physics, (2). https://doi.org/10.17072/1994-3598-2021-2-23-35

Issue

Section

Regular articles

Most read articles by the same author(s)