Convection of magnetic fluid in a closed hydrodynamic loop

Authors

  • Михаил Андреевич Косков (Mikhail A. Koskov) Institute of Continuous Media Mechanics UB RAS
  • Александр Фёдорович Пшеничников (Alexander F. Pshenichnikov) Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.17072/1994-3598-2021-2-14-22

Keywords:

convective loop, magnetic fluid, thermomagnetic convection, temperature measurements, convective heat transfer.

Abstract

Thermal convection of ferrofluid in a closed side-heated hydrodynamic loop is investigated experimentally when a nonuniform magnetic field is applied to the tube section near the electric heater. The nonuniform magnetic field with a strength of up to 24 kA/m is created by a permanent magnet of the “neodymium-iron-boron” type, equipped with ferrite pole pieces. For temperature measurements, miniature copper-constantan thermocouples are used. The temperature distribution along the circuit and temperature differences on both sides of the heater is measured. The tubes of the loop are cooled by a stream of thermostatic air which ensures a constant heat transfer coefficient at the outer surface of the tubes and an exponential temperature distribution along the circuit. The exponent determined in the experiments is used to provide information about the integral axial heat flux (Nusselt number). The experiments were performed with undecane in the ordinary gravitational convection regime and with medium concentrated magnetic fluid in the combined (gravitational and thermomagnetic) convection regime in the range of Rayleigh numbers 103–104. The estimation of the characteristic magnetic Rayleigh numbers was carried out taking into account the demagnetizing fields. For all modes, the dependence of the Nusselt number normalized to the heat transfer coefficient on the thermal Rayleigh number is plotted. It is shown that thermomagnetic convection increases the intensity of heat exchange by 4–6 times.

References

Neurlinger J. L., Rosensweig R. E, Ferrohydrodynamics. Phys. Fluids, 1964, vol. 7, no. 12, pp. 1927–1937. DOI: 10.1063/1.1711103

Shliomis M. I. Magnetic Fluids. Sov. Phys. Usp, 1974, vol. 17, p. 153.

Blums E., Cebers A., Maiorov M. Magnetic Fluids, Walter de Gruyter, Berlin, 1997.

Blums E. Heat and mass transfer phenomena. J. Magn. Magn. Mater., 2002, vol. 252. pp. 189–193. DOI: 10.1016/S0304-8853(02)00617-0

Berkovsky B. M., Medvedev V. F., Krakov M. S. Magnetic Fluids, Oxford Un. Press, Oxford, 1993.

Shlioms M. I., Smorodin B. L. Convective instability of magnetized ferrofluids. J. Magn. Magn. Mater., 2002, vol. 252, pp. 197–202.

Krakov M. S., Nikiforov I. V., Rekos A. G. Influence of the uniform magnetic field on natural convection in cubic enclosure: Experiment and numerical simulation. J. Magn. Magn. Mater., 2005, vol. 289, P. 272–274.

Bozhko A. A., Krauzima M. T., Putin G. F. Irregular oscillations near the convection threshold in magnetic nanofluid. Bulletin of Perm State University. Series: Physics, 2013, no. 3, pp. 43–49. (In Russian)

Sidorov A. S. Convection flows in plain vertical layer of ferrofluid in the presence of external uniform magnetic field. Bulletin of Perm State University. Series: Physics, 2012, no. 2, pp. 24–29. (In Russian)

Krauzina M. T., Bozhko A. A., Krauzin P. V., Suslov S. A. Complex behavior of nanofluid near thermal convection onset: its nature and features. Int. J. Heat Mass Trans., 2017, vol. 104, pp. 688–692. DOI: 10.1016/j.ijheatmasstransfer. 2016.08.106

Krauzina M. T., Bozhko A. A., Krauzin P. V., Suslov S. A. The use of ferrofluids for heat removal: Advantage or disadvantage? J. Magn. Magn. Mater., 2017, vol. 431, pp. 241–244. DOI: 10.1016/j.jmmm.2016.08.085

Lian W., Xyan Y., Li Q. Characterization of miniature authmatic energy transport devices based on the thermomagnetic effect. Energy Conversion and Management, 2009, vol. 50. pp. 35–42. DOI: 10.1016/j.enconman.2008.09.005

Blums E, Mezulis A., Kronkalns G. Magnetoconvective heat transfer from a cylinder under the influence of nonuniform magnetic field. J. Phys. Condensed Matter, 2008, vol. 20, no. 20, pp. 204128. DOI: 10.1088/0953-8984/20/20/204128

Zablockis D., Frishfelds V., Blums E. Investigation of heat efficiency of thermomagnetic convection in ferrofluids. Magnetohydrodynamics, 2009, vol. 3, no. 3, pp. 371–376.

Starovoitov V. A. Magnetic fluid cooling of electrical machines. Bulletin KuzSTU, 2005, vol. 46, no. 2, pp. 20–23.

Shaidurov G. F. Convective liquid stability in closed circuits. Int. J. Heat Mass Trans., 1968, vol. 111, no. 2, pp. 235–239

Creveling H. F., De Paz J. F., Baladi J. Y., Schoenhals R. J. Stability characteristics of a single–phase free convection loop. J. Fluid Mech., 1975, vol. 67. no. 1, pp. 65–84. DOI: 10.1017/S0022112075000171

Schoenhals R. J., Damerell P. S. Flow in a toroidal thermosyphon with angular displacement of heated and cooled sections. J. Heat Trans., 1979, vol. 101, no. 4, pp. 672–676. DOI: 10.1115/1.3451055

Ehrhard P., Muller U. Dynamical behavior of natural convection in a single–phase loop. Journal of Fluid Mechanics, 1990, vol. 217, pp. 487–518. DOI: 10.1017/S0022112090000817

Drozdov S. M. Simulation of the onset on nonstationary and chaos in a hydrodynamic system governed by a small number of degrees of freedom. J. Fluid Dyn., 2001, vol. 36, pp. 26–38. DOI: 10.1023/A:1018863206798

Basu D. N. Dynamic frequency response of a single–phase natural circulation under an imposed sinusoidal excitation. Annals of Nuclear Energy, 2019, vol. 132, pp. 603–614. DOI: 10.1016/j.anucene.2019.06.050

Lokhmanets I., Baliga B. R. Experimental investigation of steady and transient operations of a single-phase closed-loop vertical thermosyphon. Int. J. Therm. Sci., 2019, vol. 145, 105988. DOI: 10.1016/j.ijthermalsci. 2019. 105988

Rosensweig R. E. Ferrohydrodynamics. Cambrige University Press, Cambrige, 1985.

Pshenichinikov A. F., Lebedev A. V., Radionov A. V., Efremov D. V. A magnetic fluid for operation in strong gradient fields. Colloid J., 2015, vol 77, pp. 196–201. DOI: 10.1134/S1061933X15020155

Pshenichnikov A., Lebedev A., Ivanov A. O. Dynamics of magnetic fluids in crossed DC and AC magnetic fields. Nanomaterials, 2019, vol. 9, p. 1711. DOI: 10.3390/nano9121711

Vargaftc N. B., Vinogradov Y. K., Yargin V. S. Handbook of Physical Properties of Liquids and Gases. Begell House, Inc., New York, 1996.

Dortman N. B. Physical properties of rocks and minerals (petrophysics). Geophysics Handbook. Subsoil, Moscow, 1984. 455 p. (In Russian)

Fertman V. E. Magnetic Fluids Guide Book: Properties and Applications. Hemisphere Publishing Co, New York, 1990.

Chow T. S. Viscoelasticity of concentrated dispersions. Phys. Rev. E, 1994, vol. 50, no. 2, pp. 1274–1279. DOI: 10.1103/PhysRevE.50.1274

Pshenichnikov A. F., Gilyov V. G. Rheology and Magnetization of concentrated magnetite colloids. Colloid Journal, 1997, vol. 59, no. 3, pp. 346–353.

Landau L. D., Lifshitz E. M., Pitaevskii L. P. Electrodynamics of Continuous Media. Elsevier, London, 1995. 460 p.

Published

2021-06-28

How to Cite

Косков (Mikhail A. Koskov) М. А., & Пшеничников (Alexander F. Pshenichnikov) А. Ф. (2021). Convection of magnetic fluid in a closed hydrodynamic loop. Bulletin of Perm University. Physics, (2). https://doi.org/10.17072/1994-3598-2021-2-14-22

Issue

Section

Regular articles

Most read articles by the same author(s)