Reduction of drift of operating point in lithium niobate-based integrated-optical circuit

Authors

  • Алексей Владимирович Сосунов (Alexey V. Sosunov) Perm State University
  • Роман Сергеевич Пономарев (Roman S. Ponomarev) Perm State University
  • Антон Александрович Журавлев (Anton A. Zhuravlev) PJSC “Perm Scientific-Industrial Instrument Making Company”
  • Сергей Сергеевич Мушинский (Sergey S. Mushinsky) PJSC “Perm Scientific-Industrial Instrument Making Company”
  • Мариана Кунева (Mariana Kuneva) Institute of Solid State Physics

DOI:

https://doi.org/10.17072/1994-3598-2021-2-05-13

Keywords:

lithium niobate, integrated-optical circuit, operating point, proton-exchange waveguides, near-surface layer, modulator operating point drift

Abstract

This work is devoted to the study of the drift of the operating point of integrated-optical circuits based on proton-exchange waveguides in lithium niobate crystal with a recovered structure of the near-surface layer. Recovered of the damaged near-surface layer of lithium niobate wafer was carried out using pre-annealing at temperature of 500 °C. Drift of operating point is characterized by a constant change in the optical output power of the integrated-optical circuits when a bias voltage is applied to the electrodes or temperature changes. Recovered of the damaged near-surface layer of lithium niobate wafer leads to a decrease in the short-term and long-term drifts of the operating point of integrated-optical circuits. Crystal structure factor was investigated on the drift of operating point of integrated-optical circuits based on lithium niobate crystal.

References

Noguchi K. Broadband optical modulators: science, technology, and applications / ed. Chen A., Murphy E.J. Boca Raton: CRC Press. 2012. 548 p. DOI: 10.1201/B11444

Rao A., Fathpour S. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron. 2018. vol. 24, no. 4. pp. 1–14. DOI: 10.1109/JSTQE.2017.2779869

Wooten E.L. et al. Review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000. vol. 6, no. 1. pp. 69–82. DOI: 10.1109/2944.826874

Nagata H. Long-term DC drift in x-cut LiNbO3 modulators without oxide buffer layer. Optoelectronics IEE Proceedings-IET. 2000. vol. 147, no. 5, 350354. Doi: 10.1049/ip-opt:20000626

Nagata H., Papasavvas N. Bias stability of OC48 x-cut lithium-niobate optical modulators: four years of biased aging test results. Technol. Lett. IEEE. 2003. vol. 15, no. 1. pp. 42–44. DOI: 10.1109/LPT.2002.805866

Hofer L.R. et al. Bias voltage control in pulsed applications for Mach-Zehnder electrooptic intensity modulators. IEEE Trans. Control Syst. Technol. 2017. vol. 25, no. 5. pp. 1890–1895. DOI: 10.1109/TCST.2016.2626276

Yuan X. et al. Any point bias control technique for MZ modulator. Optik. 2019. vol. 178, no. 2018. pp. 918–922. DOI: 10.1016/j.ijleo.2018.10.091

Svarny J. Analysis of quadrature bias-point drift of Mach-Zehnder electro-optic modulator. Pro-ceedings of the 12th Biennial Baltic Electronics Conference. 2010. pp. 231–234. DOI: 10.1109/BEC.2010.5631589

Cho P. S., Khurgin J. B., Shpantzer I. Closed-loop bias control of optical quadrature modulator. IEEE Photonics Technology Letters. 2006. vol. 18, pp. 2209-2211. DOI: 10.1109/LPT.2006.884759

Wang L. L., Kowalcyzk T. A. Versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. Journal of Lightwave Technology. 2010. vol. 28, pp. 1703–1706. DOI: 10.1109/JLT.2010.2048553

Padmaraju K. C., Chan J., Chen L., Lipson M., Bergman K. Thermal stabilization of a microring modulator using feedback control. Optics Express. 2012. vol. 20, 2799. DOI: 10.1364/OE.20.027999

Bui D.T., Nguyen C.T., Ledoux-Rak I., Zyss J., Journet B. Instrumentation system for determina-tion and compensation of electro-optic modulator transfer function drift. Measurement Science and Technology. 2011. vol. 22, pp. 125105. DOI: 10.1088/0957-0233/22/12/125105

Fu. Y., Zhang X., Hraimel B., Liu T., Shen D. Mach-Zehnder: A Review of Bias Control Tech-niques for Mach-Zehnder Modulators in Photonic Analog Links. IEEE Microwave magazine. 2013. vol. 14, pp. 102-107. DOI: 10.1109/MMM.2013.2280332

Salvestrini J. P. et al. Analysis and Control of the DC Drift in LiNbO3-Based Mach–Zehnder Modulators. J. Light. Technol. 2011. vol. 29, no. 10. pp. 1522–1534. DOI: 10.1109/JLT.2011.2136322

Sosunov A. V., Ponomarev R. S., Yuriev V. A., Volyntsev A. B. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits. Optoelectronics, In-strumentation and Data Processing. 2017. vol. 53, no. 1. pp. 82–87. DOI: 10.3103/S8756699017010125

Piecha J. et al. Features of surface layer of LiNbO3 as-received single crystals: Studied in situ on treatment samples modified by elevated temperature. Solid State Ionics. 2016. vol. 290, pp. 31–39. DOI: 10.1016/j.ssi.2016.04.001

Sosunov A., Ponomarev R., Semenova O., Petukhov I., Volyntsev A. Effect of pre-annealing of lithium niobate on the structure and optical characteristics of proton-exchanged waveguides. Optical Materials. 2019. vol. 88, pp. 176–180. DOI: 10.1016/j.optmat.2018.11.018

Suchoski P. G., Findakly T. K., Leonberger F. J. Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electrooptic degradation. Opt. Lett., 1988, vol. 13, no. 11. pp. 1050–1052. DOI: 10.1364/OL.13.001050

Sosunov A. V., Ponomarev R. S., Yuriev V. A., Tsiberkin K. B., Volyntsev A. B. Features of structure and mechanical properties LiNbO3. Ferroelectrics. 2017. vol. 506 (1), pp. 24–31. DOI: 10.1080/00150193.2017.1281686

Nagata H. Activation energy of DC-drift of X-cut LiNbO3. Technology, 2000, vol. 12, no. 4, pp. 386–388. DOI: 10.1364/AO.37.008147

Published

2021-06-28

How to Cite

Сосунов (Alexey V. Sosunov) А. В., Пономарев (Roman S. Ponomarev) Р. С., Журавлев (Anton A. Zhuravlev) А. А., Мушинский (Sergey S. Mushinsky) С. С., & Кунева (Mariana Kuneva) М. (2021). Reduction of drift of operating point in lithium niobate-based integrated-optical circuit. Bulletin of Perm University. Physics, (2). https://doi.org/10.17072/1994-3598-2021-2-05-13

Issue

Section

Regular articles

Most read articles by the same author(s)