On a role of anisotropy and nonlinear diffusive effects during the construction of waveguides in the lithium niobate

Authors

  • Виталий Анатольевич Демин (Vitaliy A. Demin) Perm State University
  • Максим Иванович Петухов (Maxim I. Petukhov) Perm State University
  • Роман Сергеевич Пономарев (Roman S. Ponomarev) Perm State University
  • Анастасия Валерьевна Топова (Anastasia V. Topova) Perm State University

DOI:

https://doi.org/10.17072/1994-3598-2021-1-49-58

Keywords:

two-channel waveguides, diffusive processes, numerical simulation, crystal anisotropy

Abstract

Direct numerical simulation of a process of hydrogen diffusive intrusion into the lithium niobate monocrystal is fulfilled with reference to the manufacturing two-channel system of waveguides. The calculations were carried out according to the technology of waveguides production, taking into account the presence of several stages, which at first include the material saturation with the protons by treating the working surface with the melt of benzoic acid, and then annealing the sample. The contribution of the nonlinear diffusion to the process of the waveguide shaping is analyzed. It is shown that the formation of a stepped waveguide boundary is significantly influenced by the procedure of monocrystal annealing. Heretofore, the annealing stage was not quantitatively investigated. It can be emphasized that the attention has not been paid to the possible role of the annealing on formation of the sharper boundary between the waveguide and its mother substrate. A theoretical model of anisotropic diffusion in a solid material is constructed on the basis of experimental data, which indicate the presence of a transitional surface layer with pronounced regular mesostructural directions in the polished lithium niobate monocrystal. Based on the derived equations, the waveguides shape in a cross-section was simulated numerically for different values of inclination angle of the main axes with respect to the cut lines of the crystal. It is demonstrated that in the region of the waveguide bifurcation, when at the stage of protons intrusion the interaction of diffusive fluxes is possible, the diffusion anisotropy can lead to a breakdown of the waveguides symmetry, which can affect their optical properties.

References

Abouelleil M. M., Leonberger F. J. Waveguides in lithium niobate. J. Amer. Ceram. Soc., 1989, vol. 72, no. 8, pp. 1311–1321.

Paz-Pujalt G. R., Tucshel D. D. Depth profiling of proton exchanged LiNbO3 waveguides by micro-Raman spectroscopy. Appl. Phys. Lett., 1993, vol. 62, no. 26, P. 3411–3413.

Korkishko Yu. N., Fedorov V. A. Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties. IEEE J. Select. Topics Quant. Electronics, 1996, vol. 2, no. 2, pp. 187–196.

Ponomarev R. S. Structural model of drift phenomena in optical microcircuit on the base of HxLi1-xNbO3 waveguides. Abstract of PhD thesis. Perm: Perm State University, 2014, 16 p. (In Russian).

Ponomarev R. S. Structural model of drift phenomena in optical microcircuit on the base of HxLi1-xNbO3 waveguides. PhD thesis. Perm: Perm State University, 2014, 148 p. (In Russian).

Voblikov E. D., Volyntsev A. B., Zhuravlev A.A., Kichanov A. V., Ponomarev R. S., Shevtsov D. I. Integrated optical modulator based on the Mach-Zehnder interferometer with an asymmetric waveguides topology. Trudy MAI, 2011, no. 46, 12 p. (Electronic resourse) URL: http://trudymai.ru/published.php?ID=25992 (Access date: 10.03.2021)

Sosunov A., Ponomarev R., Semenova O., Petukhov I., Volyntsev A. Effect of pre-annealing of lithium niobate on the structure and optical characteristics of proton-exchanged waveguides. Optical Materials, 2019, vol. 88, pp. 176–180.

Permyakova E. V., Samoilova A. E. Modeling of the proton exchange in lithium niobate. Proc. of “Physics for Perm Region”, 2019, vol. 12, pp. 95–100.

Vohra S. T., Mickelson A. R., Asher S. E. Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 channel waveguides. J. Appl. Phys., 1989, vol. 66, no. 11, pp. 5161–5174. DOI: 10.1063/1.343751.

Gantmakher F. R. The theory of matrices. Chelsea Publ., 1960. 374 p.

Ferziger J. H., Peric M. Computational methods for fluid dynamics. New York: Springer, 2002, 423 p.

Published

2021-04-05

How to Cite

Демин (Vitaliy A. Demin) В. А., Петухов (Maxim I. Petukhov) М. И., Пономарев (Roman S. Ponomarev) Р. С., & Топова (Anastasia V. Topova) А. В. (2021). On a role of anisotropy and nonlinear diffusive effects during the construction of waveguides in the lithium niobate. Bulletin of Perm University. Physics, (1). https://doi.org/10.17072/1994-3598-2021-1-49-58

Issue

Section

Regular articles

Most read articles by the same author(s)