Structure, physical and chemical properties of near-surface layers of optical materials modified by treatment in hydrogen plasma
DOI:
https://doi.org/10.17072/1994-3598-2021-1-12-39Keywords:
hydrogen plasma, lithium niobate, optical glasses, integrated optical elementsAbstract
The present paper aims to investigate the structure and properties of the near-surface layers of optical materials modified by treatment in hydrogen plasma (H-plasma). For this the quartz and soda-lime glasses, lithium niobate (LN) as delivered and LN after proton exchange were used. The structure and properties of the near-surface layers of optical materials were investigated by IR spectroscopy, Raman spectroscopy, X-ray diffraction analysis, atomic force microscopy, mode spectroscopy, scanning electron microscopy, and wet chemical etching. During the treatment in H-plasma the hydrogen penetrated into the near-surface layers and caused increasing the number of defects in the structure of materials. Changes of the shape and intensity of the absorption peaks of OH–-groups and the θ/2θ-curves recorded from the LN samples processed in H-plasma were inconsequent, probably due to the thin modified layer. For the first time, a huge volume “swelling” (above 10 %) of the near-surface layers of LN and soda-lime glass after the processing in H-plasma was revealed. Also for the first time, the formation of thin strained layers on the surface of the LN after treatment in H-plasma was shown; the density reduction of the near-surface layers of the LN modified in H-plasma was described; the features of blistering and flaking were found on the surface of LN and soda-lime glass after their treatment for a long time (120–150 min). For the first time, the multilayer structure of the near-surface region of the LN was detected after treatment in H-plasma. In this paper we proposed the model of changes the structure and properties of LN after the treatment in H-plasma. The model explains the experimental results obtained in this study and previously published studies of other research groups. Due to the high concentration in the near-surface layers of optical materials after the H-plasma treatment, hydrogen predominantly forms pores and bubbles. Presumably the compounds of the Li2O–Nb2O5 system with a low Li content formed in the near-surface region of LN after the treatment in H-plasma. Modification of near-surface layers of optical materials in hydrogen plasma could be used to form elements of integrated-optical circuits, particularly the diffraction gratings.References
Nemilov S.V. Opticheskoe materialovedenie. Opticheskie stekla (Optical materials science. Optical glasses). St. Petersburg: ITMO University, 2011. 175 p. (In Russian).
Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, 1983, vol. 16, no. 12, pp. 1214-1222. DOI: 10.1088/0022-3735/16/12/023
Cabrera J. M., Olivares J., et al. Hydrogen in lithium niobate. Advances in Physics, 1996, vol. 45, no. 5, pp. 349-392. DOI: 10.1080/ 00018739600101517
Ren Z., Heard P. J., et al. Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma. Journal of Applied Physics, 2008, vol. 103, p. 034109. DOI: 10.1063/1.2838180
Gerhard С., Tasche D., et al. Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma. Optical Letters, 2012, vol. 37, no. 4, pp. 566-568. DOI: 10.1364/OL.37.000566
Ren Z., Heard P. J., et al. Fabrication and characterizations of proton-exchanged LiNbO3 waveguides fabricated by inductively coupled plasma technique. Applied Physics Letters, 2006, vol. 88, p. 142905. DOI: 10.1063/1.2191704
Ren Z., Heard P. J., Yu S. Novel fabrication technique of Proton exchanged Waveguide Based on LiNbO3 Using Inductively Coupled Plasma. Proc. of European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference – 2007. Munich: Optical Society of America, 2007, P. CE_1.
Ren Z., Heard P. J., Yu S. Proton exchange and diffusion in LiNbO3 using inductance coupled high density plasma. Journal of Vacuum Science and Technology B, 2007, vol. 25, no. 4, pp. 1161-1165. DOI: 10.1116/1.2746052
Budnar M., Zorko B., et al. ERDA study of H+ incorporated into lithium niobate optical layers. Nuclear Instruments and Methods in Physics Research B, 2000, vol. 161–163, pp. 568-572. DOI: 10.1016/S0168-583X(99)00996-9
Turcicova H., Arend H., Jarolimek O. A low-resistance layer on LiNbO3 produced in hydrogen RF discharge. Solid State Communications, 1995, vol. 93, no. 12, pp. 979-981. DOI: 10.1016/0038-1098(94)00918-X
Turcicova H., Perina V., et al. Plasma processing of LiNbO3 in a hydrogen/oxygen radio-frequency discharge. Journal of Physics D: Applied Physics, 1998, vol. 31, pp. 1052-1059. DOI: 10.1088/0022-3727/31/9/004
Turcicova H., Pracharova J., et al. Sheet Resistance of LiNbO3 Wafers Processed in Radio-Frequency Plasma of Hydrogen. Proc. of 19 th Symp. on Plasma Physics and Technology – 2000. Prague: Czechoslovak Journal of Physics, 2000, vol. 5(S3), pp. 461-465. DOI: 10.1007/BF03165930
Turcicova H., Preucil S., et al. Li Depth Anomaly after Radio-Frequency Hydrogen Plasma Processing of Single Crystal LiNbO3. Ferroelectrics, 2000, vol. 239, pp. 313-320. DOI: 10.1080/ 00150190008213337
Turcicova H., Vacik J., et al. LiNbO3 exposed to radio-frequency plasma. Nuclear Instruments and Methods in Physics Research B, 1998, vol. 141, pp. 494-497. DOI: 10.1016/S0168-583X(98)00195-5
Turcicova H., Zemek J., et al. Surface analysis of LiNbO3 single crystals modified by radio-frequency hydrogen plasma. Surface and Interface Analysis, 2000, vol. 29, pp. 260-264. DOI: 10.1002/(SICI)1096-9918(200004)29:4<260::AID -SIA737>3.0.CO;2-O
Turcicova H., Zemek J., et al. Single-crystal LiNbO3 surfaces processed in low-temperature hydrogen plasma: XPS, REELS and AFM study. Surface and Interface Analysis, 2002, vol. 34, pp. 468-471. DOI: 10.1002/sia.1340
Hayes C. M., Pereira M. B., et al. Sub-micron integrated grating couplers for single-mode planar optical waveguides. Proc. of 17th Biennial University/Government/Industry Micro/Nano Symposium – 2008. Louisville, 2008, pp. 227-232. DOI: 10.1109/UGIM.2008.67
Salgaeva U. O., Volyntsev A. B. Modification of the structure and properties of optical materials in hydrogen plasma. Features of change of the optical absorption. Photon-express, 2019, no. 6 (158), pp. 312-313 (In Russian). DOI: 10.24411/2308-6920-2019-16163
Tuschel D. Selecting an excitation wavelength for Raman spectroscopy. Spectroscopy, 2016, vol. 31, no. 3, pp. 14-23.
James R. W. The optical principles of the Diffraction of X-rays. London, Great Britain: Bell, 1948. 624 p.
Shevtsov D. I. Strukturnye i opticheskie svoistva metastabil'nykh faz v protonoobmennykh volnovodnykh sloiakh na monokristalle niobata litiia (Structural and optical properties of metastable phases in proton-exchange waveguide layers on a lithium niobate single crystal). PhD Thesis, Perm: Perm State University, 2005, 167 p (In Russian).
Onodera H., Awai I., Ikenoue J. Refractive index measurement of bulk materials prism coupling method. Applied Optics, 1983, vol. 22, pp. 1194-1198. DOI: 10.1364/AO.22.001194
Ulrich R., Torge R. Measurement of thin film parameters with a prism coupler. Applied Optics, 1973, vol. 12, no. 12, pp. 2901-2908. DOI: 10.1364/AO.12.002901
Korkishko Yu. N., Fedorov V. A. Relationship between refractive indices and hydrogen concentration in proton exchanged LiNbO3 waveguides. Journal of Applied Physics, 1997, vol. 82, no. 3, pp. 1010-1017. DOI: 10.1063/1.365864
Grating Tutorial. URL: https://www.thorlabs.com/ tutorials.cfm?tabID=0CA9A8BD-2332-48F8-B01A-7F8BF0C03D4E
Palmer C. Diffraction grating handbook. New York, USA: Thermo RGL, 2002. 204 р.
Howell P. G. T., Davy K. M. W, Boyde A. Mean atomic number and backscattered electron coefficient calculations for some materials with low mean atomic number. Scanning, 1998, vol. 20, pp. 35-40. DOI: 10.1002/sca.1998.4950200105
Mysiura I., Kalantaryan O., et al. Luminescence of quartz glass induced by X-rays. Journal of Surface Physics and Engineering, 2016, vol. 1, no. 3, pp. 282–288
Barannik E., Kalantaryan O. Time dependence of silica optical properties during the implantation of fast hydrogen ions: Theory. Nuclear Instruments and Methods in Physics Research B, 2015, vol. 362, pp. 182-186. DOI: 10.1016/j.nimb. 2015.09.080
Davis K. M., Tomozawa M. An infrared spectroscopic study of water-related species in silica glasses. Journal of Non-Crystalline Solids, 1996, vol. 201, pp. 177-198. DOI: 10.1016/0022-3093(95)00631-1
Davis K M., Tomozawa M. Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity. Journal of Non-Crystalline Solids, 1995, vol. 185, pp. 203-220. DOI: 10.1016/0022-3093(95)00015-1
Amma S., Kim S., Pantano C. analysis of water and hydroxyl species in soda-lime glass surfaces using attenuated total reflection (ATR)-IR spectroscopy. Journal of the America Ceramic Society, 2016, vol. 99, no. 1, pp. 128-134. DOI: 10.1111/jace.13856
Kaz'mina O. V. Khimicheskaia tekhnologiia stekla i sitallov (Chemical technology of glass and sitalls). Tomsk, Russia: Tomsk Polytechnic University, 2011. 170 p. (In Russian).
Ridah A., Bourson P., et al. The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3. Journal of Physics: Condensed Matter, 1997, vol. 9, no. 44, pp. 9687-9693. DOI: 10.1088/0953-8984/9/44/022
Shevtsov D. I., Azanova I. S., et al. Metastable phases in proton-exchanged waveguides on an X-cut of lithium niobate. Physics of Solid State, 2006, vol. 48, pp. 1059-1063.
Salgaeva U. O., Volyncev A. B., Mendes S. B. Surface modification of optical materials with hydrogen plasma for fabrication of Bragg gratings. Applied Optics, 2016, vol. 55, no. 3, pp. 485-490. DOI: 10.1364/AO.55.000485
Azanova I. S., Shevtsov D. I., et al. Chemical etching technique for investigations of a structure of annealed and unannealed proton exchange channel LiNbO3 waveguides. Ferroelectrics, 2008, vol. 374, no. 1, pp. 110–121. DOI: 10.1080/00150190802427234
Bachiri A., Bennani F., Bousselamti M. Dielectric and electrical properties of LiNbO3 ceramics. Journal of Asian Ceramic Societies, 2016, vol. 4, no. 1, pp. 46-54. DOI: 10.1016/j.jascer.2015.11.006
Fan Y., Li H., Zhao L. Investigation on structure and photorefractive properties of Mg:Ce:Cu:LiNbO3 crystals with various [Li/Nb] ratios. Optical Materials, 2007, vol. 30, pp. 492-496. DOI: 10.1016/j.optmat.2006.12.015
Nazarov A. N., Lysenko V. S., Nazarova T. M. Hydrogen plasma treatment of silicon thin-film structures and nanostructured layers. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008, vol. 11, no. 2, pp. 101-123. DOI: 10.1088/1468-6996/13/4/045004
Eren B., Marot L., et al. Hydrogen-induced buckling of gold films. Journal of Applied Physics D: Applied Physics, 2014, vol. 47, no. 2, pp. 025302-025302-7. DOI: 10.1088/0022-3727/47/2/025302
Giri P. K., Biswas A., Mandal M. K. The relaxation time of OH bond for hydrogen impurity in LiNbO3. arXiv: 1810.01959, Materials Science, 2018, n. p., URL: https://arxiv.org/ftp/arxiv/papers/1810/ 1810.01959.pdf
Casey Jr. H. C., ChangoHo C., et al. Analysis of hydrogen diffusion from protonexchanged layers in LiNbO3. Applied Physics Letters, 1993, vol. 63, pp. 718-720. DOI: 10.1063/1.109938
Was G. S. Fundamentals of Radiation Materials Science. Metals and Alloys. Berlin, Germany: Springer, 2007. 827 p. DOI: 10.1007/978-3-540-49472-0
Spitsyn A.V. Proniknovenie vodoroda iz plazmy cherez polikristallicheskie materialy i grafit (Penetration of hydrogen from plasma through polycrystalline materials and graphite). PhD Thesis, Moscow: National Reasearch Center “Kurchatov Institute”, 2007, 153 p (In Russian).
Zholnin A. G., Zaluzhnyi A. G., et al. Composition of the gas in the blisters which develop when a hydrogen or deuterium plasma acts upon austenitic steels. Soviet Atomic energy, 1986, vol. 60, pp. 428-430.
Downloads
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.