Geoacoustic emission during the passage through the Earth's crust of high-energy cosmic ray muons

Authors

  • Бахтияр Абуталипович Искаков (Bakhtiyar A. Iskakov) Institute of Physics and Technology
  • Дмитрий Безноско (Dmitry Beznosko) Harvard University
  • Виталий Валерьевич Жуков (Vitaly V. Zhukov) Tien Shan High-Mountain Scientific Station
  • Турлан Хамзинович Садыков (Turlan Kh. Sadykov) Institute of Physics and Technology
  • Назиф Мунипович Салихов (Nazif M. Salikhov) Institute of the Ionosphere
  • Ернан Мадуарович Таутаев (Ernar Maduarovich Tautaev) Institute of Physics and Technology
  • Александр Леонидович Щепетов A.P. Lebedev Institute of Physics of RAS

DOI:

https://doi.org/10.17072/1994-3598-2021-1-05-11

Keywords:

Acoustic emission, muons, seismology, Earth, cosmic rays, microphone

Abstract

The unresolved problem of traditional seismology to date is the separation from the stream of information recorded by numerous seismic sensors of a strictly defined signal about the approach of a catastrophic earthquake specific in time and space. Such a signal is usually lost against a constant background from a large number of another events. At the turn of the 1980s and 1990s, scientists from the Physics Institute and the Institute of Physics of the Earth developed a preliminary concept for a new promising direction in seismology. Using the signal from elastic vibrations in the acoustic frequency range for earthquake prediction. These signals can be generated by ionization. Ionization is formed at the moment of the passage of high-energy muons through a seismically stressed medium in the deep layers of the earth's crust. It is hoped that this method may be one way to predict earthquakes in the future.

References

Hardy H. R. Acoustic emission. Microseismic activity, Vol. 1: Principles, techniques and geotechnical applications. London: Taylor & Francis, 2003, 300 p.

Ohtsu M., Ono K. A generalized theory of acoustic emission and Green's function in a half space. J. Acoustic Emission, 1984, no. 3, pp. 27–40.

Ono K. Current understanding of mechanisms of acoustic emission. Journal of Strain Analysis for Engineering Design, 2005, vol. 40, no. 1, pp. 1–15.

Gordienko V. A., Gordienko T. V., Kuptsov A. V., Larionov I. A., Marapulets Yu. V., Shevtsov B. M., Rutenko A. N. Geoacoustic location of earthquake preparation areas. Doklady Earth Sciences, 2006, vol. 407, no. 3, pp. 474-477.

Brune J. N., Oliver J. The seismic noise of the Earth's surface. Bulletin of the Seismological Society of America, 1959, vol. 49, no. 4, pp. 349–353.

Rykunov L. N., Khavroshkin O. B., Tsyplakov V. V. Spectra of high-frequency microseism envelope after the Alaskan and Mexican earth-quakes of March 1979. Dokl. Akad. Nauk SSSR, 1980, vol. 252, no. 4, pp. 836–838 (In Russian).

Tsarev V. A. Geophysical applications of neutrino beams. Sov. Phys. Usp. 1985, vol. 28, no. 10, pp. 940.

Tsarev V. A., Chechin V. A. Atmospheric muons and high-frequency seismic noise. LPI preprints, 1988, N. 179, 21 p. (In Russian).

Saleev V. A, Tsarev V. A., Chechin V. A. Thermoacoustic signal from “direct” neutrino beam. Bulletin of the Lebedev Physics Institute, 1984, no. 5, p. 30 (In Russian).

Gusev G. A., Zhukov V. V., Merzon G. I., Mit'ko G. G., Stepanov A. S., Ryabov V. A., Chechin V. A., Chubenko A. P., Shchepetov A. L. Cosmic rays as a new instrument of seismological studies. Bulletin of the Lebedev Physics Institute, 2011, no. 12, pp. 374–379.

Vil'danova L. I., Gusev G. A., Zhukov V. V., Mer-zon G. I., Mitko G. G., Naumov A. S., Ryabov V. A., Stepanov A. V., Chechin V. A., Chubenko A. P., Shchepetov A. L. The first results of observations of acoustic signals generated by cosmic ray muons in a seismically stressed medium. Bulletin of the Lebedev Physics Institute, 2013, no. 3, pp. 74–79.

Iskakov B. A., Argynova A. Kh., Argynova K. A., Beisenova A., Zastrozhnova N. N., Piskal V. V., Salikhov N. M., Tastanova K., Tautaev E. M., Khabargeldina M. Using the penetrating ability of cosmic muons for the earthquake prediction. NNC RK Bulletin, 2019, vol. 4, no. 80, pp. 23–27 (In Russian).

Mukashev K. M., Vildanova L. I., Sadykov T. Kh., Shepetov A. L., Salikhov N. M., Muradov A. D., Zhukov V. V., Argynova A. Kh. Seismic signal registration with an acoustic detector at the Tien Shan mountain station. News of the NAS RK. Ser. of Geology and Technical, 2019, vol. 3, no. 429, pp. 47–56.

Iskakov B. A., Tautayev Y. M., Sadykov T. Kh., Shepetov A. L., Salikhov N. M. The development and creation of a software system for the monitoring system MAC1. International Journal of Mathematics and Physics, 2019, vol. 10, no. 1, pp. 107–111

Mukashev K. M., Sadykov T. Kh., Ryabov V. A., Shepetov A. L., Khachikyan G. Ya., Salikhov N. M., Muradov A. D., Novolodskaya O. A., Zhukov V. V., Argynova A. Kh. Investigation of acoustic signals correlated with the flow of muons of cosmic rays, in connection with seismic activity of the north Tien Shan. Acta Geophysica, 2019, vol. 64, pp. 1241–1251.

Zhukov V. V., Idrisova T. K., Mukashev K. M., Muradov A. D., Sadykov T. Kh., Saduyev N. O., Umarov F. F., Shepetov A. L. Acoustic signal associated with the passage of penetrating cosmic radiation through a seismically stressed environment. Resent Contributions to Physics, 2020, vol. 74, no. 3, pp. 75–83.

Published

2021-04-05

How to Cite

Искаков (Bakhtiyar A. Iskakov) Б. А., Безноско (Dmitry Beznosko) Д., Жуков (Vitaly V. Zhukov) В. В., Садыков (Turlan Kh. Sadykov) Т. Х., Салихов (Nazif M. Salikhov) Н. М., Таутаев (Ernar Maduarovich Tautaev) Е. М., & Щепетов, А. Л. (2021). Geoacoustic emission during the passage through the Earth’s crust of high-energy cosmic ray muons. Bulletin of Perm University. Physics, (1). https://doi.org/10.17072/1994-3598-2021-1-05-11

Issue

Section

Rapid Communications