On the mechanism of instability in a two-layer system with limited solubility of components

Authors

  • Алексей Иванович Мизев (Alexey I. Mizev) Institute of Continuous Media Mechanics UB RAS
  • Елена Александровна Мошева (Elena A. Mosheva) Institute of Continuous Media Mechanics UB RAS
  • Владислав Олегович Ощепков (Vladislav O. Oshchepkov) Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.17072/1994-3598-2020-4-43-50

Keywords:

two-layer systems, limited solubility, hydrodynamic instability, diffusion

Abstract

A two-layer system of miscible liquids is a common model system in studies of both fundamental and applied problems in hydrodynamics that associated with stratified media. Rayleigh-Taylor instabilities or double diffusive one can lead to a disturbance in mechanical equilibrium if both or at least one of the components dissolved in each of the layers are initially unstable stratified. The situation when both components have a stable initial density distribution is believed that absolutely stable and, usually, is not considered by researchers. This paper experimentally demonstrates the possibility of developing instability in such systems and proposes a physical mechanism based on the dependence of the solubility of one of the components on the concentration of the second component. It is shown that the evolution of the density profile, the possibility of the development of instability, and the properties of the arising convective motion are determined by the initial position of the system on the parameters plane of the solubility diagram.

Author Biographies

Алексей Иванович Мизев (Alexey I. Mizev), Institute of Continuous Media Mechanics UB RAS

Лаборатория гидродинамической устойчивости, заведующий лаборатории

Елена Александровна Мошева (Elena A. Mosheva), Institute of Continuous Media Mechanics UB RAS

Лаборатория гидродинамической устойчивости, научный сотрудник

Владислав Олегович Ощепков (Vladislav O. Oshchepkov), Institute of Continuous Media Mechanics UB RAS

Лаборатория гидродинамической устойчивости, аспирант

References

Schöpf W., Stiller O. Three-dimensional patterns in a transient, stratified intrusion flow. Physical Review Letters. 1997, vol. 79, pp. 4373. DOI: 10.1103/PhysRevLett.79.4373

Norris S. E. Rayleigh-Bénard roll formation in a thermal intrusion. Proceedings of the 18th Australasian Fluid Mechanics Conference. 2012. pp. 206–209

Demin V. A., Kostarev K. G., Mizev A. I., Mosheva E. A., Popov E. A. On convective instability of the counter propagating fluxes of inter-soluble liquids. Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]. 2014, vol. 10. no 2, pp. 195–208

Mizev A., Mosheva E., Kostarev K., Demin V., Popov E. Stability of solutal advective flow in a horizontal shallow layer. Physical Review Fluids. 2017, vol. 2 (10), 103903. DOI: 10.1103/PhysRevFluids.2.103903

Turner J. S. Buoyancy effects in fluids. Cambridge, UK: Cambridge university press. 1979. 412 p.

Radko T. A. Double-diffusive convection. Cambridge, UK: Cambridge university press. 2013, 344 p.

Kunze E. A. Review of oceanic salt-fingering theory. Progress in Oceanography. 2003, vol. 56, no. 3–4, pp. 399–417. DOI: 10.1016/S0079-6611(03)00027-2

Maruyama S., Tsubaki K., Taira K., Sakai S. Artificial upwelling of deep seawater using the perpetual salt fountain for cultivation of ocean desert. Journal of Oceanography. 2004, vol. 60, pp. 563–568. DOI: 10.1023/B:JOCE.0000038349.56399.09

Neufeld J. A., Hesse M. A., Riaz A., Hallworth M. A., Tchelepi H. A., Huppert H. E. Convective dissolution of carbon dioxide in saline aquifers. Geophysical research letters. 2010, vol. 37, no. 22, pp. 1–5. DOI: 10.1029/2010GL044728

MacMinn C. W., Neufeld J. A., Hesse M. A., Huppert H. E. Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Research. 2012, vol. 48, no. 11, pp. 1–11. DOI: 10.1029/2012WR012286

Jafari Raad S. M., Emami‐Meybodi H., Hassanzadeh H. On the choice of analogue fluids in CO2 convective dissolution experiments. Water Resources Research. 2016, vol. 52, no. 6, pp. 4458–4468. DOI: 10.1002/2015WR018040

Backhaus S., Turitsyn K., Ecke R. E. Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Physical Review Letters. 2011, vol. 106, no. 10, 104501. DOI: 10.1103/PhysRevLett.106.104501

Birikh R. V., Denisova M. O., Kostarev K. G. Modeling of the Marangoni instability of uniform diffusion through an interface in weightlessness conditions. Journal of Applied Mechanics and Technical Physics. 2019, vol. 60, no. 7, pp. 1264–1277. DOI: 10.1134/S0021894419070034

Kostarev K. G., Torokhova S. V. Instability of the interface due to surfactant diffusion in the system of immiscible liquids. Microgravity Science and Technology. 2020, vol. 32, pp. 507–512. DOI: 10.1007/s12217-020-09787-y

Vener R. E., Thompson A. R. Solubility and density isotherms-sodium sulfate-ethyl alcohol-water. Industrial & Engineering Chemistry. 1950. vol. 42, no. 1, pp. 171–174. DOI: 10.1021/ie50481a044

Borisov I. M., Nabiev A. A. Constants of electrolytic dissociation of the lithium, sodium and potassium sulfates in aqueous isopropanol solutions. Russ. J. Chem. Chem. Tech. 2020, vol. 63, no. 3, pp. 16–22. DOI: 10.6060/ivkkt.20206303.6123

Published

2020-12-25

How to Cite

Мизев (Alexey I. Mizev) А. И., Мошева (Elena A. Mosheva) Е. А., & Ощепков (Vladislav O. Oshchepkov) В. О. (2020). On the mechanism of instability in a two-layer system with limited solubility of components. Bulletin of Perm University. Physics, (4). https://doi.org/10.17072/1994-3598-2020-4-43-50

Issue

Section

Regular articles

Most read articles by the same author(s)