Modelling of the X-ray diffraction curves from the proton-exchange layers of a lithium niobate monocrystal

Authors

  • Оксана Семенова (Oksana R. Semenova) Perm State University
  • Алексей Владимирович Сосунов (Alexey V. Sosunov) Perm State University
  • Алена Чуракова (Alyona Churakova) Perm State University

DOI:

https://doi.org/10.17072/1994-3598-2020-4-17-28

Keywords:

lithium niobate, protone exchange, X-ray diffraction curves

Abstract

In this work, within the framework of the dynamic theory of the X-ray scattering, a model is constructed that describes the diffraction reflection curves obtained from the proton-exchange layers of a lithium niobate monocrystal subjected to the post-exchange annealing. Planar proton-exchange waveguides based on the X-cut of the lithium niobate monocrystal are obtained experimentally. It was shown that the proton implantation leads to the formation of the new crystalline phases with a larger lattice parameter. The structure changes (by the method of the diffraction structural analysis) and the optical properties (by the method of the mode spectroscopy) of the obtained waveguides are investigated in the various temperature regimes. The microstrain of the crystal lattice caused by еру proton implantation was estimated by the analysis of X-ray diffraction line broadening. It is shown the thickness of the waveguide layer and the number of new crystalline phases depend not only on the temperature regime of the proton exchange, but also on the duration of post-exchange annealing. The simulation of the experimentally obtained curves of the diffraction reflection is carried out within the framework of the described model. As a result of the modeling, the depth of the waveguide layer was determined, which is consistent with the data obtained by the method of the mode spectroscopy. The models of the assumed profiles of the crystal lattice deformation caused by proton implantation are presented. The average values of the lattice microstrain and the phase composition of proton-exchange lithium niobate layers are determined.

Author Biographies

Оксана Семенова (Oksana R. Semenova), Perm State University

доцент кафедры нанотехнологий и микросистемной техники

Алексей Владимирович Сосунов (Alexey V. Sosunov), Perm State University

ассистент кафедры нанотехнологий и микросистемной техники

Алена Чуракова (Alyona Churakova), Perm State University

выпускник кафедры нанотехнологий и микросистемной техники

References

Wooten E. L. , Kissa K. M., Yan A. Yi, Mur-phy E. J., Lafaw D., Hallemeier P. F., Maack D. R., Attanasio D.V., Fritz D. J., McBrien G. J., Bossie D. E. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000, vol. 6, no. 1, pp. 69–82. DOI: 10.1109/2944.826874

Bazzan M., Cinzia S. Optical waveguides in lithium niobate: Recent developments and applications. Applied Physics Reviews, 2015, vol. 2, 040603. DOI: 10.1063/1.4931601

Jackel J. L., Rice C. E. Topotactic LiNbO3 to cubic perovskite structural transformation in LiTaO3 and LiNbO3. Ferrolectrics, 1981, vol. 38, pp. 801–811. DOI: 10.1016/0022-4596(82)90150-5

Jackel J. L, Rice C. E., Veselka J. J. Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett., 1982, vol. 41, no. 7, pp. 607–608. DOI: 10.1063/1.93615

Korkishko Ju. N., Fedorov V. A. Strukturno-fazovaja diagramma protonoobmennyh HxLi1-xNbO3 volnovodov v kristallah niobata litija. Kristallografija, 1999, vol. 44, no. 2, pp. 271–280. (In Russian)

Afanas’ev A. M., Imamov R. M. Structural characterization of quantum-well layers by double-crystal X-ray diffractometry. Crystallography Reports, 2003, vol. 5, no. 5, pp. 728–743. DOI: 10.1134/1.1612593

Fewster P. F. The simulation and interpretation of diffraction profiles from partially relaxed layer structures. J. Appl. Cryst., 1992, vol. 25, pp. 714–723.

Punegov V. I. Dynamical theory of X-ray diffraction in a crystal with a surface grating of another material. J. Exp. Theor. Phys, 2019, vol. 129, pp. 197–209. DOI: 10.1134/S1063776119070185

Takagi S. Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr., 1962, vol. 15, no. 12, pp. 1131–1312. DOI: 10.1107/S0365110X62003473

Takagi S. A dynamical theory of diffraction for a distorted crystal. J. Phys. Soc. Jpn., 1969, vol. 26, no. 5, pp. 1239–1253. DOI: 10.1143/JPSJ.26.1239

Afanas’ev A. M. Dynamical theory of X-ray diffraction in crystals with defects. Acta Crystallogr., 1971, vol. 27, pp. 421–430. DOI: 10.1107/S0567739471000962

Afanas'ev A. M., Aleksandrov P. A., Imamov R. M. Rentgenovskaja strukturnaja diagnostika v issledovanii pripoverhnostnyh sloev monokristallov. M.: Nauka, 1986, 96 p. (In Russian).

Kato N. Perdellosung fringers in distorted crystals. II. Application to two-beam cases. J. Phys. Soc. Jpn., 1964, vol. 19, no. 1, pp. 67–77. DOI: 10.1143/JPSJ.19.67

Suvorov E. V., Smirnova I. A. A new approach to understanding the mechanisms of diffraction imaging of dislocations in X-ray topography. Technical Physisc Letters, 2012, vol. 38, no. 11, pp. 991–994. DOI: 10.1134/S1063785012110132

Taupin D. Theorie dynamique de la diffraction des rayons X par les cristaux deformes. Bull. Soc. Franc. Miner. Cryst., 1964, vol. 87, no. 2, pp. 469–511. DOI:10.3406/bulmi.1964.5769

Bowen D. K., Tanner B. K. High resolution X-ray diffractometry and topography. CRC Press, 1998, 252 p.

Bublik V. T., Shherbachev K. D., Voronova M. I., Mil'vidskij A. M. Difrakcionnye metody izuchenija materialov i pribornyh struktur : ionnaja implantacija: ucheb. posobie. M.: Izd. dom MISiS, 2013. 67 p. (In Russian).

Wie C. R., Tombrello T. A., Vreeland T. Dynamical X-ray diffraction from nonuniform crystalline films: Application to X-ray rocking curve analysis. J. Appl. Phys., 1986, vol. 59, no. 11, pp. 3743–3746. DOI: 10.1063/1.336759

Pinsker Z. G. Dinamicheskoe rassejanie rentgenovskih luchej v ideal'nyh kristallah. M.: Nauka, 1974, 368 p. (In Russian).

Kitajgorodskij A. I. Rentgenostrukturnyj analiz. M.; L.: Gos. izd-vo tehn.-teor. lit., 1950, 650 p. (In Russian).

Korkishko Y. N., Fedorov V. A. Structural phase diagram of HxLi1-xNbO3 waveguides: The correlation between optical and structural properties. IEEE J. Sel. Top. Quantum Electron, 1996, vol. 2 (2), pp. 187–196.

Zhundrikov A. V., Kichigin V. I., Petuhov I. V., Shevcov D. I. Processy starenija i izmenenija struktury protonoobmennyh volnovodov v kristallah niobata litija. Trudy MAI, 2011, vol. 42, pp. 1–9. (In Russian).

Kolosovskij E. A., Petrov D. V., Carev A. V. Numerical method for the reconstruction of the refractive index profile of diffused waveguides. Soviet Journal of Quantum Electronics, 1981, vol. 11 (12), pp. 1560–1566. DOI: 10.1070/QE1981v011n12ABEH008650

Ostafiychuk B. K., Yaremiy I. P., Fedoriv V. D., Kravets V. I., Kotsubunskiy V. O, Morushko O. V. Possibility of one-valued definition of a relative modification of interplanar distance profilesin surface layers of single crystals from datas of a two-crystalline X-ray diffractometry. Physics and Chemistry of Solid State, 2002, vol. 3, no. 1, pp. 148–153.

Published

2020-12-25

How to Cite

Семенова (Oksana R. Semenova) О., Сосунов (Alexey V. Sosunov) А. В., & Чуракова (Alyona Churakova) А. (2020). Modelling of the X-ray diffraction curves from the proton-exchange layers of a lithium niobate monocrystal. Bulletin of Perm University. Physics, (4). https://doi.org/10.17072/1994-3598-2020-4-17-28

Issue

Section

Regular articles

Most read articles by the same author(s)