The experimental study of ferrocolloid surface tension in a magnetic field

Authors

  • Кристина Андреевна Хохрякова (Christina A. Khokhryakova) Institute of Continuous Media Mechanics UB RAS
  • Анастасия Ивановна Шмырова (Anastasia I. Shmyrova) Institute of Continuous Media Mechanics UB RAS
  • Ирина Андреевна Мизева (Irina A. Mizeva) Institute of Continuous Media Mechanics UB RAS
  • Андрей Викторович Шмыров (Andrey V. Shmyrov) Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.17072/1994-3598-2020-3-56-64

Keywords:

magnetic fluid, surface tension, interferometry, tensiometry, magnetic field, capillary waves

Abstract

Direct measurements of surface tension, viscosity and surface elasticity under the action of external forces are often impossible. In many tasks, the magnetic fluid surface tension is considered to be independent of the magnitude of the applied magnetic field and is determined by the properties of the base fluid. The anisotropy of the magnetic properties at the interface due to the jump in the fluid’s magnetization suggests the dependence of the surface tension tensor on the magnetic field. In this paper, we propose a new experimental method for studying the surface tension of a magnetic fluid in an external uniform magnetic field, depending on the orientation of the magnetic field intensity towards the liquid-gas interface. The study was carried out with the help of modified capillary wave method in a magnetic field orthogonal to the liquid surface and with the ring detachment method in the case of a longitudinal field. It was shown experimentally that the surface tension of a ferrocolloid fluid base (kerosene) does not depend either on the frequency of capillary waves excitation or on intensity of an applied external magnetic field, and corresponds to the value determined with the help of a commercial tensiometer by the standard method of ring detachment. The surface tension of the ferrofluid decreases with increasing intensity of the orthogonal magnetic field interface and with increasing frequency of acoustic vibrations. However, an increase in the field strength longitudinally directed to the interface, provokes an increase in the surface tension of the magnetic fluid. The experimental results are in qualitative agreement with theoretical predictions by A. V. Zhukov: the eigenvalues of the surface tension tensor monotonically increase with the tangential magnetic field component and monotonically decrease with an increase in its normal component.

Author Biographies

Кристина Андреевна Хохрякова (Christina A. Khokhryakova), Institute of Continuous Media Mechanics UB RAS

научный сотрудник лаборатории динамики дисперсных систем

Анастасия Ивановна Шмырова (Anastasia I. Shmyrova), Institute of Continuous Media Mechanics UB RAS

научный сотрудник лаборатории гидродинамической устойчивости

Ирина Андреевна Мизева (Irina A. Mizeva), Institute of Continuous Media Mechanics UB RAS

научный сотрудник лаборатории физической гидродинамики

Андрей Викторович Шмыров (Andrey V. Shmyrov), Institute of Continuous Media Mechanics UB RAS

младший научный сотрудник лаборатории гидродинамической устойчивости

References

Latikka M., Backholm M., Timonen J., Ras R. Wetting of ferrofluids: Phenomena and control Current Opinion in Colloid and Interface Science, 2018, vol. 36, pp. 118–129. DOI: 10.1016/j.cocis.2018.04.003

Rosensweig R. E., Zahn M. Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface. IEEE Trans. Magnetics, 1980, no. 2, pp. 275–282. DOI: 10.1109/TMAG.1980.1060586

Fertman V. E. Magnetic Fluids Guidebook. CRC Press, 1990. 146 p.

Bashtovoi V. G., Taits E. M. Some effects associated with the discontinuity of magnetization at the interface between magnetic liquids. Magnetohydrodynamics, 1985, vol. 21, no. 2, pp. 148–153.

Golubyatnikov A. N., Subkhankulov G. I. Surface tension of a magnetic liquid. Magnetohydrodynamics, 1986, vol. 22, no. 1, pp. 62–66.

Zhukov A. V. Structure and stability of the interface between magnetic and conventional fluids. Model of a three-component medium. Fluid Dynamics, 2013, vol. 48, no. 5, pp. 599–611. DOI: 10.1134/S0015462813050049

Zhukov A. V. Structure of the interface between magnetic and conventional fluids: Model of immiscible phases. Fluid Dynamics, 2016, vol. 51, no. 1, pp. 18–28. DOI: 10.1134/S0015462816010038

Amin M. S., Elborai S., Lee S.-H., He X., Zahn M. Surface tension measurement techniques of magnetic fluids at an interface between different fluids using perpendicular field instability. J. Appl. Phys, 2005, vol. 97, 10R308. DOI: 10.1063/1.1861374

Sudo S., Hashimoto H., Ikeda A. Measurements of the surface tension of a magnetic fluid and interfacial phenomena JSME Int. J., 1989, vol. 32, no. 1, pp. 47–51. DOI: 10.1299/jsmeb1988.32.1_47

Afkhami S., Tyler A. J., Renardy Y., Renardy M., Pierre T. G. St., Woodward R. C., Riffle J. S. Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields J. Fluid Mech., 2010, vol. 663, pp. 358–384. DOI: 10.1017/S0022112010003551

Shmyrova A. I., Mizeva I. A., Artamonova P. A. Capillary waves modified technique. Bulletin of Perm University. Physics, 2018, no. 3 (41), pp. 32–38. DOI: 10.17072/1994-3598-2018-3-32-38

Shmyrov A., Mizev A., Shmyrova A., Mizeva I. Capillary wave method: An alternative approach to wave excitation and to wave profile reconstruction Physics of Fluids, 2019, vol. 31, 012101. DOI: 10.1063/1.5060666

Rusanov A. I., Prokhorov V. A. Interfacial Tensiometry. Elsevier Science, 1996. 397 p.

Lebedev A. V. Calculating the magnetization curves of concentrated magnetic fluids. Magnetohydrodynamics, 1989, vol. 25, no. 4, pp. 520–523.

Landau L. D., Lifschitz E. M.. Fluid Mechanics. Vol. 6. Pergamon Press, 1959.

Behroozi F., Smith J., Even W. Stokes' dream: Measurement of fluid viscosity from the attenuation of capillary waves. Am. J. Phys., 2010, vol. 78, no. 11, pp. 1165–1169. DOI: 10.1119/1.3467887

Browaeysyz J., Perzynski R., Bacri J.-C., Shliomis M. I.. Capillary-gravity wave resistance in ordinary and magnetic fluids. Eur. Phys. Lett. 2001. vol. 53, no. 2, pp. 209–215. DOI: 10.1209/epl/i2001-00138-7

Published

2020-09-23

How to Cite

Хохрякова (Christina A. Khokhryakova) К. А., Шмырова (Anastasia I. Shmyrova) А. И., Мизева (Irina A. Mizeva) И. А., & Шмыров (Andrey V. Shmyrov) А. В. (2020). The experimental study of ferrocolloid surface tension in a magnetic field. Bulletin of Perm University. Physics, (3). https://doi.org/10.17072/1994-3598-2020-3-56-64

Issue

Section

Regular articles

Most read articles by the same author(s)