Study of the stability of a thin liquid layer in the Landau–Levich problem

Authors

  • Андрей Витальевич Люшнин (Andrey V. Lyushnin) Perm State Humanitarian-Pedagogical University
  • Ксения Александровна Пермякова (Kseniya A. Permyakova) Perm State Humanitarian-Pedagogical University

DOI:

https://doi.org/10.17072/1994-3598-2020-3-48-55

Keywords:

thin film, stability, Landay–Levich problem

Abstract

The stability of the liquid layer in the Landay–Levich problem is theoretically investigated. The free energy of this layer is the sum of the dispersion (van der Waals) interaction and the specific electrical interaction caused by the presence of two electric layers at both interphase boundaries. In the framework of long-wave approximation, the stability of such a system with respect to perturbations is studied in the system of Navier–Stokes equations. A stability map is provided for different layer thicknesses.

References

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 1918, vol. 40, no. 9, pp. 1361–1403.

Vrij A. Possible mechanism for the spontaneous rupture of thin, free liquid films. Discussions of the Faraday Society, 1966, vol. 42. pp. 23–33. DOI: 10.1039/DF9664200023

Padmakar A. S, Kargupta K., Sharma A. Instability and dewetting of evaporating thin water films on partially and completely wettable. The Journal of Chemical Physics, 1999, vol. 110, no. 3, pp. 1735–1744. DOI: 10.1063/1.477810

Ruckenstein E., Jain R. K. Spontaneous rupture of thin liquid films. Journal of the Chemical Society, 1974, vol. 70, pp. 132–147.

Derjaguin B. V., Churaev N. V. On the question of determining the concept of disjoining pressure and its role in the equilibrium and flow of thin films. Journal of Colloid and Interface Science, 1978, vol. 66, no. 3, pp. 389–398. DOI: 10.1016/0021-9797(78)9005-5

Israelachvili J. N. Intermolecular and surface forces with applications to colloidal and biological systems. New York; Academic, 1992. 296 p.

Sharma A., Ruckenstein E. An analytical nonlinear theory of thin film rupture and its application to wetting films. Journal of Colloid and Interface science, 1986, vol. 113, no. 2, pp. 456–479. DOI: 10.1016/0021-9797(86)9081-5

Reiter G. Dewetting of thin polymer films. Physical Review Letters, 1992, vol. 68, no. 1, pp. 75–82. DOI: 10.1103/PhysRevLett.68.75

Derjaguin B. V. Theory of stability of colloids and thin films, New York: Consultants Bureau, 1989. 274 p.

Williams M. B., Davis S. H. Nonlinear theory of film rupture. Journal of Colloid and Interface Science, 1982, vol. 90, no. 1, pp. 220–228.

DOI: 10.1016/0021-9797(82)90415

Teletzke G. F., Davis H. T., Scriven L. E. Wetting hydrodynamics. Revue de Physique Appliquée, 1988, vol. 23, no. 6, pp. 989–1007. DOI: 10.1051/rphysap: 01988002306098900

Sharma A., Jameel A. T. Nonlinear stability, rupture, and morphological phase separation of thin fluid films on apolar and polar substrates. Journal of Colloid and Interface Science, 1993, vol. 161, no. 1, pp. 190–208. DOI: 10.1006/jcis.1993.1458

Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E. Wetting and spreading. Reviews of Modern Physics, 2009, vol. 81, no. 2, pp. 739–805. DOI: 10.1103/RevModPhys.81.739

Craster R. V., Matar O. K. Dynamics and stability of thin liquid films. Reviews of Modern Physics, 2009, vol. 81, no. 3, pp. 1131–1198. DOI: 10.1103/RevModPhys.81.1131

Landau L., Levich B. Dragging of a liquid by a moving plate. Acta Physicochim. URSS, 1942, vol. 17, pp. 42–54.

Krechetnikov R., Homsy G. M. Dip coating in the presence of a substrate-liquid interaction potential. Journal of Fluid Mechanics, 2005, vol. 17, pp. 102105–102113. DOI: 10.1063/1.2107927

Maleki M., Reyssat M., Restagno F., Quéré D., Clanet C. Landau–Levich menisci. Journal of Colloid and Interface Science, 2011, vol. 354, no. 1, pp. 359–363. DOI: 10.1016/j.jcis.2010.07.069

Mayer H. C., Krechetnikov R. Landau–Levich flow visualization: Revealing the flow topology responsible for the film thickening phenomena. Physics of Fluids, 2012, vol. 24, pp. 052103–052136. DOI: 10.1063/1.4703924

Maillard M., Boujle J., Coussot P. Solid-solid transition in Landau–Levich flow with soft-jammed systems. Physical Review Letters, 2014, vol. 112, 068304. DOI: 10.1103/PhysRevLett.112.068304

Bindini E., Naudin G., Faustini M., Grosso D., Boissière C. The critical role of the atmosphere in dip-coating process. Journal of Physical Chemistry, 2017, vol. 121, no. 27, pp. 14572–14580. DOI: 10.1021/acs.jpcc.7b02530

Krechetnikov R., Homsy G. M. Surfactant effects in the Landau–Levich problem. Journal of Fluid Mechanics, 2006, vol. 559, pp. 429–450. DOI: 10.1017/S0022112006000425

Afanasiev K., Münch A., Wagner B. Landau–Levich problem for non-Newtonian liquids. Physical Review E, 2007, vol. 76, no. 3, 036307. DOI: 10.1103/PhysRevE.76.036307

Han Y., Na Y. H. Measurement of liquid film thickness on moving plate during dip-coating process. Korea-Australia Rheology Journal, 2018, vol. 30, pp. 137–143. DOI: 10.1007/s13367-018-0014-x

Oron A., Davis S. H., Bankoff S. G. Long-scale evolution of thin liquid films. Reviews of Modern Physics, 1997, vol. 69, no. 3, pp. 931–980. DOI: 10.1103/RevModPhys.69.931

Jameel A. T., Sharma A. Morphological phase separation in thin liquid films: II. Equilibrium contact angles of nanodrops coexisting with thin films. Journal of Colloid and Interface Science, 1994, vol. 164, no. 2, pp. 416–427. DOI: 10.1006/jcis.1994.1184

Derjaguin B. V., Churaev N. V., Muller V. M., Kisin V. I. Surface forces. New York: Consultants Bureau, 1987. 440p.

Sanochkin Y. V. Van der Waals waves in free-surface liquids Technical Physics, 2003, vol. 48. no.5, p. 546–551. DOI: 10.1134/1.1576465

Published

2020-09-23

How to Cite

Люшнин (Andrey V. Lyushnin) А. В., & Пермякова (Kseniya A. Permyakova) К. А. (2020). Study of the stability of a thin liquid layer in the Landau–Levich problem. Bulletin of Perm University. Physics, (3). https://doi.org/10.17072/1994-3598-2020-3-48-55

Issue

Section

Regular articles