Temperature dependence of carbon nanoparticles transport characteristics

Authors

  • Сергей Александрович Судоргин (Sergey A. Sudorgin) Volgograd State Agricultural University
  • Николай Геннадьевич Лебедев (Nikolay G. Lebedev) Volgograd State University

DOI:

https://doi.org/10.17072/1994-3598-2020-3-24-30

Keywords:

carbon nanotubes, graphene, bilayer graphene, conductivity, diffusion of electrons

Abstract

Technique for calculating the temperature dependences of transport characteristics of different carbon nanoparticles: single-walled nanotubes, graphene, bilayer graphene in a constant external electric field is proposed. Formulas for conductivity and the diffusion coefficient of electrons in carbon nanostructures obtained analytically and analyzed numerically. Conductivity in single-walled and bilayer carbon nanostructures decreases with increasing temperature. The electrical conductivity of carbon nanoparticles depends nonlinearly on the amplitude of the external constant electric field for various temperatures. With increasing temperature, the coefficient of conductivity decreases. The diffusion coefficient of electrons is independent of temperature for both single-layer and bilayer nanoparticles. A nonlinear dependence of the electron diffusion coefficient on the strength of an external constant electric field is shown. Physical justification of the obtained dependences is propose.

Author Biography

Сергей Александрович Судоргин (Sergey A. Sudorgin), Volgograd State Agricultural University

К.ф.-м.н., доцент

References

Eletskii A. V. Mechanical properties of carbon nanostructures and related materials. Physics Uspekhi, 2007, vol. 50, pp. 225–261.

Chernozatonskii L. A., Sorokin P. B., Artyukh A. A. New nanostructures based on graphene: physico-chemical properties and applications. Russian Chemical Reviews, 2014, vol. 83, no. 3, pp. 251–279.

Eletskii A. V., Iskandarova I. M., Bookman A. A., Krassikov D. N. Graphene: fabrication methods and thermophysical properties. Physics Uspekhi, 2011, vol. 54, pp. 227–258.

Morozov S. V., Novoselov K. S., Geim A. K. Electronic transport in graphene. Physics Uspekhi, 2008, vol. 51, pp. 744–748.

Lozovik Yu., Merkulov S., Sokolik A.A. Collective electron phenomena in graphene. Physics Uspekhi, 2008, vol. 51, pp. 727–744.

Rakov E.G. Carbon nanotubes in new materials. Russian Chemical Reviews, 2013, vol. 82, no. 1, pp. 27–47.

Harris P. Carbon nanotubes and related structures. New Materials of the XXI century. Moscow: Technosphere, 2003. 336 p. (In Russian).

Maksimenko S. A., Slepyan G. Ya. Nanoelectromagnetics of low-dimentional structure. In: Handbook of nanotechnology. Nanometer structure: theory, modeling, and simulation. Bellingham: SPIE, 2004. 576 p.

Eletskii A.V. Transport properties of carbon nanotubes. Physics Uspekhi, 2009, vol. 52, pp. 209–224.

Diachkov P. N. Carbon nanotubes: structure, properties, applications. Moscow: BINOM, 2006. 293 p. (In Russian)

Belonenko M. B., Lebedev N. G., Sudorgin S. A. coefficients of diffusion and conductivity of semiconductor carbon nanotubes in an external electric field. Physics of the Solid State, 2011, vol. 53, no. 9, pp. 1943–1946.

Belonenko M. B., Lebedev N. G., Sudorgin S. A. Electrical conductivity and diffusion coefficient of electrons in a graphene bilayer. Technical Physics, 2012, vol. 57, no. 7, pp. 1025–1029.

Sudorgin S. A., Belonenko M. B., Lebedev N. G. Effect of electric field on the transport and diffusion properties of bilayer graphene ribbons. Physica Scripta, 2013, vol. 87, no. 1, 015602.

Landau L. D., Lifshitz E. M. Physical kinetics. Moscow: Fizmatlit, 1979. 528 p. (In Russian)

Buligin A. S., Shmelev G. M., Maglevanny I. I. Differential thermopower superlattice in a strong electric field. Physics of the Solid State, 1999, vol. 41, pp. 1314–1316. (In Russian)

Izyumov Y. A., Chashchin I. I., Alekseev D. S. Theory of strongly correlated systems. Generating functional method. Moscow–Izhevsk: Regular and Chaotic Dynamics, 2006. 384 p. (In Russian)

Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E. Controlling the electronic structure of bilayer graphene. Science, 2006, vol. 313, pp. 951–954.

Dykman I. M., Tomchuk P. M. Fluctuations and transport phenomena in semiconductors. Kiev, Naykova Dumka, 1981. 320 p. (In Russian)

Published

2020-09-23

How to Cite

Судоргин (Sergey A. Sudorgin) С. А., & Лебедев (Nikolay G. Lebedev) Н. Г. (2020). Temperature dependence of carbon nanoparticles transport characteristics. Bulletin of Perm University. Physics, (3). https://doi.org/10.17072/1994-3598-2020-3-24-30

Issue

Section

Regular articles