Temperature dependence of carbon nanoparticles transport characteristics
DOI:
https://doi.org/10.17072/1994-3598-2020-3-24-30Keywords:
carbon nanotubes, graphene, bilayer graphene, conductivity, diffusion of electronsAbstract
Technique for calculating the temperature dependences of transport characteristics of different carbon nanoparticles: single-walled nanotubes, graphene, bilayer graphene in a constant external electric field is proposed. Formulas for conductivity and the diffusion coefficient of electrons in carbon nanostructures obtained analytically and analyzed numerically. Conductivity in single-walled and bilayer carbon nanostructures decreases with increasing temperature. The electrical conductivity of carbon nanoparticles depends nonlinearly on the amplitude of the external constant electric field for various temperatures. With increasing temperature, the coefficient of conductivity decreases. The diffusion coefficient of electrons is independent of temperature for both single-layer and bilayer nanoparticles. A nonlinear dependence of the electron diffusion coefficient on the strength of an external constant electric field is shown. Physical justification of the obtained dependences is propose.References
Eletskii A. V. Mechanical properties of carbon nanostructures and related materials. Physics Uspekhi, 2007, vol. 50, pp. 225–261.
Chernozatonskii L. A., Sorokin P. B., Artyukh A. A. New nanostructures based on graphene: physico-chemical properties and applications. Russian Chemical Reviews, 2014, vol. 83, no. 3, pp. 251–279.
Eletskii A. V., Iskandarova I. M., Bookman A. A., Krassikov D. N. Graphene: fabrication methods and thermophysical properties. Physics Uspekhi, 2011, vol. 54, pp. 227–258.
Morozov S. V., Novoselov K. S., Geim A. K. Electronic transport in graphene. Physics Uspekhi, 2008, vol. 51, pp. 744–748.
Lozovik Yu., Merkulov S., Sokolik A.A. Collective electron phenomena in graphene. Physics Uspekhi, 2008, vol. 51, pp. 727–744.
Rakov E.G. Carbon nanotubes in new materials. Russian Chemical Reviews, 2013, vol. 82, no. 1, pp. 27–47.
Harris P. Carbon nanotubes and related structures. New Materials of the XXI century. Moscow: Technosphere, 2003. 336 p. (In Russian).
Maksimenko S. A., Slepyan G. Ya. Nanoelectromagnetics of low-dimentional structure. In: Handbook of nanotechnology. Nanometer structure: theory, modeling, and simulation. Bellingham: SPIE, 2004. 576 p.
Eletskii A.V. Transport properties of carbon nanotubes. Physics Uspekhi, 2009, vol. 52, pp. 209–224.
Diachkov P. N. Carbon nanotubes: structure, properties, applications. Moscow: BINOM, 2006. 293 p. (In Russian)
Belonenko M. B., Lebedev N. G., Sudorgin S. A. coefficients of diffusion and conductivity of semiconductor carbon nanotubes in an external electric field. Physics of the Solid State, 2011, vol. 53, no. 9, pp. 1943–1946.
Belonenko M. B., Lebedev N. G., Sudorgin S. A. Electrical conductivity and diffusion coefficient of electrons in a graphene bilayer. Technical Physics, 2012, vol. 57, no. 7, pp. 1025–1029.
Sudorgin S. A., Belonenko M. B., Lebedev N. G. Effect of electric field on the transport and diffusion properties of bilayer graphene ribbons. Physica Scripta, 2013, vol. 87, no. 1, 015602.
Landau L. D., Lifshitz E. M. Physical kinetics. Moscow: Fizmatlit, 1979. 528 p. (In Russian)
Buligin A. S., Shmelev G. M., Maglevanny I. I. Differential thermopower superlattice in a strong electric field. Physics of the Solid State, 1999, vol. 41, pp. 1314–1316. (In Russian)
Izyumov Y. A., Chashchin I. I., Alekseev D. S. Theory of strongly correlated systems. Generating functional method. Moscow–Izhevsk: Regular and Chaotic Dynamics, 2006. 384 p. (In Russian)
Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E. Controlling the electronic structure of bilayer graphene. Science, 2006, vol. 313, pp. 951–954.
Dykman I. M., Tomchuk P. M. Fluctuations and transport phenomena in semiconductors. Kiev, Naykova Dumka, 1981. 320 p. (In Russian)
Downloads
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.