Chemoconvective flow in gravitational and variable inertial field

Authors

  • Елена Александровна Мошева (Elena A. Mosheva) Institute of continuous media mechanics UB RAS
  • Николай Викторович Козлов (Nikolay V. Kozlov) Institute of continuous media mechanics UB RAS

DOI:

https://doi.org/10.17072/1994-3598-2020-1-52-61

Keywords:

neutralization reaction, convection, vibrations, hydrodynamic instability

Abstract

The convective instability that develops at the boundary between two reagents in the vertical Hele–Shaw cell during the neutralization reaction is experimentally studied. The instability in the form of a plane density wave spontaneously arises and then propagates in the medium at abnormally high rate. Evolution of the flow structure is studied and the velocity fields are obtained at different vibrational accelerations. The question of possibility to control the instability by vibrations is discussed.

Author Biographies

Елена Александровна Мошева (Elena A. Mosheva), Institute of continuous media mechanics UB RAS

Лаборатория гидродинамической устойчивости, научный сотрудник

Николай Викторович Козлов (Nikolay V. Kozlov), Institute of continuous media mechanics UB RAS

Лаборатория гидродинамической устойчивости, старший  научный сотрудник

References

Wylock C., Dehaeck S., Rednikov A., Colinet P. Chemo-hydrodynamical instability created by CO2 absorption in an aqueous solution of NaHCO3 and Na2CO3. Microgravity Science and Technology, 2008, vol. 20, pp. 171–175. DOI: 10.1007/s12217-008-9022-7

Almarcha C., Trevelyan P. M. J., Grosfils P., De Wit A. Chemically driven hydrodynamic instabilities. Physical Review Letters, 2010, vol. 104, no. 4, 044501. DOI: 10.1103/PhysRevLett.104.044501

Almarcha C., R'Honi Y., De Decker Y., Trevelyan P. M. J., Eckert K., De Wit A. Convective mixing induced by acid-base reactions. The Journal of Physical Chemistry B, 2011, vol. 115, no. 32, pp. 9739–9744. DOI: 10.1021/jp202201e

Kuster S., Riolfo L. A., Zalts A., El Hasi C., Almarcha C., Trevelyan P. M. J., De Wit A., D’Onofrio A. Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the effect of color indicator. Physical Chemistry Chemical Physics, 2011, vol. 13, 17295, DOI: 10.1039/C1CP21185D

Bratsun D, Mizev A., Mosheva E., Kostarev K. Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids. Physical Review E, 2017, vol. 96, no. 5, 053106. DOI: 10.1103/PhysRevE.96.053106

Loodts V., Thomas C., Rongy L., De Wit A. Control of convective dissolution by chemical reactions: General classification and application to CO2 dissolution in reactive aqueous solutions. Physical review letters, 2014, vol. 113, no. 11, 114501. DOI: 10.1103/PhysRevLett.113.114501

Bratsun D. A., Siraev R. R. Control of mixing in a continuous-flow microreactor with a varied gap width. Bulletin of Perm University. Series: Physics, 2017, vol. 38, no. 4, pp. 26–36 (In Russian).

Eckert K., Rongy L., De Wit A. A + B → C reaction fronts in Hele-Shaw cells under modulated gravitational acceleration. Physical Chemistry Chemical Physics, 2012, vol. 14, pp. 7337–7345. DOI: 10.1039/C2CP40132K

Horváth D., Budroni M. A., Bába P., Rongy L., De Wit A., Eckert K., Tóth Á. Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Physical Chemistry Chemical Physics, 2014, vol. 16, pp. 26279–26287. DOI: 10.1039/C4CP02480J

Bratsun D. A., Shi Y., Eckert K., De Wit A. Control of chemo-hydrodynamic pattern formation by external localized cooling. Europhysics Letters, 2005, vol. 69, no. 5, pp. 746–752. DOI: 10.1209/epl/i2004-10417-9

Shkadinskaya G. V., Shkadinskii K. G. Stabilization of the front of polymerization of composite materials in a plug-flow reactor. Russian Journal of Physical Chemistry B, 2014, vol. 8, no. 2, pp. 221–226. DOI: 10.1134/S1990793114020213

Gershuni G. Z., Lyubimov D. V. Thermal Vibrational Convection. New York, USA: Wiley, 1998. 372 p.

Wolf G. G. H. Dynamic stabilization of the Rayleigh–Taylor instability of miscible liquids and the related “frozen waves”. Physics of Fluids, 2018, vol. 30, no. 2, 021701. DOI: 10.1063/1.5017846

Von Kameke A., Huhn F., Fernández-García G., Muñuzuri A. P., Pérez-Muñuzuri V. Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow. Physical Review E, 2010, vol. 81, 066211. DOI: 10.1103/PhysRevE.81.066211

Von Kameke A., Huhn F., Muñuzuri A. P., Pérez-Muñuzuri V. Measurement of large spiral and target waves in chemical reaction-diffusion-advection systems: turbulent diffusion enhances pattern formation. Physical Review Letters, 2013, vol. 110, 088302. DOI: 10.1103/PhysRevLett.110.088302

Bratsun D. A., Stepkina O. S., Kostarev K. G., Mizev A. I., Mosheva E. A. Development of concentration-dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia. Microgravity Science and Technology, 2016, vol. 28, no. 3, pp. 575–585.

Nikolsky B. P., Grigorov O. N., Pozin M. E., Poraj-Koshic B. A., Rabinovich V. A., Rachinskij F. YU., Romankov P. G., Fridrihsberg D. A. Chemist’s Handbook, Vol. 3. Moscow, Russia: Khimiya Publishing House, 1964, 1008 p. (In Russian).

Nisancioglu K., Newman J. Diffusion in aqueous nitric acid solutions. AIChE Journal, 1973, vol. 19, no 4, pp. 797–801. DOI: 10.1002/aic.690190417

Demin V. A., Makarov D. V. Ustoichivost' konvektivnykh techenii v iacheike Khele-Shou pri vozdeistvii vertikal'nykh vibratsii (Stability of convective flows in Hele–Shaw cell under vertical vibrations). Bulletin of Perm University. Series: Physics, 2005. vol. 1. pp. 101–110. (In Russian)

Published

2020-03-25

How to Cite

Мошева (Elena A. Mosheva) Е. А., & Козлов (Nikolay V. Kozlov) Н. В. (2020). Chemoconvective flow in gravitational and variable inertial field. Bulletin of Perm University. Physics, (1). https://doi.org/10.17072/1994-3598-2020-1-52-61

Issue

Section

Regular articles

Most read articles by the same author(s)