Numerical study of the velocity slip of a carrier and a dispersed phase in the interaction of a shock wave with an electrically charged gas suspension
DOI:
https://doi.org/10.17072/1994-3598-2020-1-35-42Keywords:
multiphase media, interphase interaction, shock waves, Navier–Stokes equation, Coulomb forceAbstract
In this paper, we consider the propagation of a shock wave from a pure gas into a heterogeneous mixture con-sisting of solid particles suspended in a gas and having an electric charge. The applied mathematical model takes into account the speed and thermal interaction of the carrier and dispersed components of the mixture. The mathematical model assumed a monodisperse composition of the solid component of the mixture, that is, it was assumed that all particles have the same linear size, shape and consist of one material. The force interaction of particles and gas included the Stokes force, the strength of the attached masses, as well as the dynamic force of Archimedes. The carrier medium was described as a viscous compressible heat-conducting gas. The equations of the mathematical model were solved by the explicit finite-difference method of the second order of accuracy, using the non-linear correction of the grid function. The system of equations of the mathematical model was supplemented by boundary and initial conditions for the desired functions: at the boundaries of the computational domain, the Dirichlet boundary conditions were set for the velocity components of the carrier and dispersed phase for the remaining dynamic functions Neumann conditions were set. For the Poisson equation describing the distribution of the internal electric field of a charged gas suspension, homogeneous Dirichlet boundary conditions were specified. As a result of numerical calculations, differences were revealed in the velocity slip of the carrier and dispersed phases, in cases where the shock wave propagates into a neutral and electrically charged dusty medium. It was also revealed the effect of particle size on the speed of sliding of the carrier and dispersed components of a heterogeneous mixture during the propagation of a shock wave into a neutral and electrically charged gas suspension.References
Nigmatulin R. I. Dinamika mnogofaznyh sred (The dynamics of multiphase media) Part 1 Science, 1987.446 p. (in Russian).
Kutushev A. G. Matematicheskoe modelirovanie volnovyh processov v aerodispersnyh i poroshkoobraznyh sredah (Mathematical modeling of wave processes in aerodispersed and powdery media). St. Petersburg: Nedra, 2003, 284 p. (in Russian).
Fedorov A. V., Fomin V. M., Khmel T. A. Volnovye processy v gazovzvesyah chastic metallov (Wave processes in gas-suspended particles of metals). Novosibirsk, 2015.301 p. (in Russian).
Sadin D. V. TVD scheme for stiff problems of wave dynamics of heterogeneous media of non-hyperbolic nonconservative type. Computational Mathematics and Mathematical Physics, 2016, vol. 56, no. 12, pp. 2068–2078, DOI: 10.1134/S0965542516120137
Varaksin A. Y., Protasov M. V., Yatsenko V. P. Analysis of the deposition processes of solid particles onto channel walls. High Temperature, 2013, vol. 51, no. 5, pp. 665–672, DOI: 10.1134/S0018151X13050210
Varaksin A. Y. Clusterization of particles in turbulent and vortex two-phase flows. High Temperature, 2014, vol. 52, no. 5, pp. 752–769. DOI: 10.1134/S0018151X14050204
Glazunov A. A., Dyachenko N. N., Dyachenko L. I. Numerical investigation of the flow of ultradisperse particles of the aluminum oxide in the solid-fuel rocket engine nozzle. Thermophysics and Aeromechanics, 2013, vol. 20, no. 1, pp. 79–86. DOI: 10.1134/S0869864313010071
Zhuoqing A. Jesse Z. Correlating the apparent viscosity with gas-solid suspension flow in straight pipelines. Powder Technology, 2019, vol. 345, pp. 346–351. DOI: 10.1016/j.powtec.2018.12.098
Gubaidullin D. A., Tukmakov D. A. Numerical investigation of the evolution of a shock wave in a gas suspension with consideration for the nonuniform distribution of the particles. Mathematical Models and Computer Simulations, 2015, vol. 7, no. 3, pp. 246–253.
DOI: 10.1134/S2070048215030072
Nigmatulin R. I., Gubaidullin D. A., Tukmakov D. A. Shock wave dispersion of gas – particle mixtures. Doklady Physics, 2016, vol. 61, no. 2, pp. 70–73. DOI: 10.1134/S1028335816020038
Tadaa Y., Yoshioka S., Takimoto A., Hayashi Y. Heat transfer enhancement in a gas – solid suspension flow by applying electric field, International Journal of Heat and Mass Transfer, 2016, vol. 93, pp. 778–787. DOI: 10.1016/j.ijheatmasstransfer.2015.09.0.063
Zinchenko S. P., Tolmachev G. N. Accumulation of products of ferroelectric target sputtering in the plasma of an RF glow discharge. Plasma Physics Reports, 2013, vol. 39, no. 13, pp. 1096–1098. DOI: 10.1134/S1063780X13050176
Dikalyuk A. S., Surzhikov S. T. Numerical simulation of rarefied dusty plasma in a normal glow discharge. High Temperature, 2012, vol. 50, no. 5. pp. 571–578. DOI: 10.1134/S0018151X12040050
Tukmakov A. L., Tukmakov D. A. Generation of acoustic disturbances by a moving charged gas suspension, Journal of Engineering Physics and Thermophysics, 2018, vol. 91, no. 5, pp. 1141–1147. DOI: 10.1007/s10891-018-1842-8
Panyushkin V. V., Pashin M. M. Izmerenie zaryada poroshka, nanosimogo raspylitelyami s vneshnej zaryadkoj (Measurement of the charge of the powder applied by sprayers with external charging), Lakokrasochnye materialy i ih primenenie, 1984, no. 2, pp. 25–27 (In Russian).
Tukmakov D. A. Numerical study of polydisperse aerosol dynamics with the drops destruction. Lobachevskii Journal of Mathematics, 2019, vol. 40, no. 6, pp. 824–827. DOI: 10.1134/S1995080219060234
Tukmakov D. A. Numerical simulation of oscillations of an electrically charged heterogeneous medium due to intercomponent interaction. Izvestiya VUZ. Applied Nonlinear Dynamics, 2019, vol. 27, no. 3, pp. 73–85. DOI: 10.18500/0869-6632-2019-27-3-73-85 (in Russian).
Salyanov F. A. Osnovy fiziki nizkotemperaturnoj plazmy, plazmennyh apparatov i tekhnologij (Fundamentals of low-temperature plasma physics, plasma devices and technologies). Moscow: Nauka, 1997. 240 p. (in Russian).
Tukmakov A. L. Chislennoe modelirovanie akusticheskih techenij pri rezonansnyh kolebaniyah gaza v zakrytoj trube (Numerical modeling of acoustic flows during resonant gas oscillations in a closed pipe) Aviacionnaya tekhnika, 2006, no. 4, pp. 33–36 (in Russian).
Fletcher C. A. Computation techniques for fluid dynamics. Berlin: Springer, 1988, 502 p.
Muzafarov I. F., Utyuzhnikov S. V. Application of compact difference schemes to investigation of unstationary gas flows. Mathematical Models and Computer Simulations, 1993, vol. 5, no. 3, pp. 74–83 (in Russian).
Krylov V. I., Bobkov V. V., Monastic P. I. Vychislitel'nye metody (Computational Methods). Vol. 2, Moscow: Nauka, 1977, 401 p. (in Russian).
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.