Nonlinear convection regimes in a fluid layer partially filled with an inhomogeneous porous medium
DOI:
https://doi.org/10.17072/1994-3598-2017-3-22-30Abstract
We numerically simulate a nonlinear problem of convection excitation in a horizontal single-component-fluid layer heated from below and partially filled with an inhomogeneous porous medium under the gravitational field. Porosity and permeability of the porous medium depend on a vertical coordinate. The porous matrix divides a cavity with the fluid into two layers. Convection in a porous layer and in the fluid layer located above it is described by equations within the Boussinesq approximation. A fluid flow through pores obeys Darcy's law. The nonlinear problem is solved by the Galerkin and finite difference methods. A linear stability problem for mechanical equilibrium is simulated by the shooting method. The Nusselt number versus supercriticality is obtained at a fixed ratio of layer thicknesses and various porosity gradients. It was shown that when porosity grows with depth, convection monotonously arises in the form of the long-wave rolls covering both layers. Additional vortices occur in the fluid layer as supercriticality goes up. They lead to fluid oscillations. In the case of uniform porosity and the porosity decreasing with depth, convection starts up as short-wave rolls localized in the fluid layer. They enhance as supercriticality rises. For a homogeneous medium we recorded a sharp increase in the heat flux with rising supercriticality. It is associated with the penetration of convective motion into a porous layer and enhancement of heat transfer from the lower hot wall of the cavity.References
Gershuni G. Z., Zhukovitskii E. M. Convective stability of incompressible fluids. Moscow: Nau-ka, 1972. 392 p.
Nield D., Bejan A. Convection in Porous Media. USA: Springer, 2013. 778 p.
Katto Y., Matsuoka T. Criterion for onset of con-vective flow in a fluid in a porous medium. Inter-national Journal of Heat Mass Transfer, 1967, vol. 10, pp. 297–309. DOI: 10.1016/0017-9310(67)90147-0
Glukhov A. F., Putin G. F. Experimental’noe issle-dovanie konvectivnih structur v nasischenoii zhidkost’u poristoi srede vblizi poroga neus-toichivosti mehanicheskogo ravnovesiya (Experi-mental study of the convective structures in a po-rous medium saturated with the fluid near the onset of instability of the mechanical equilibrium). Gidrodinamica (Hydrodynamics), 1999, vol. 12, pp. 104–119. (In Russian)
Glukhov A. F., Lyubimov D. V., Putin G. F. Con-vective motions in a porous medium near the equi-librium instability threshold. Soviet Physics Dokla-dy, 1978, vol. 23, pp. 28-32.
Liubimov D. V., Muratov I. D. O konvectivnoi neustoichivosti v sloistoi sisteme (On convective instability in a layered system). Gidrodinamica (Hydrodynamics), 1977, vol. 10, pp. 38–46. (In Russian)
Chen F., Chen C. F. Onset of finger convection in a horizontal porous layer underlying a fluid layer. ASME Journal of Heat Transfer, 1988, vol. 110, no. 2, pp. 403–409. DOI: 10.1115/1.3250499
Chen F. and Chen C. F. Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below. Journal of Fluid Mechanics, 1989, vol. 207, pp. 311–321. DOI: 10.1017/S0022112089002594
Prasad V. Flow instabilities and heat transfer in fluid overlying horizontal porous layers. Experi-mental Thermal and Fluid Science, 1993, vol. 6, pp. 135–146. DOI: 10.1016/0894-1777(93)90023-C
Zhao P., Chen C. F. Stability analysis of double-diffusive convection in superposed fluid and po-rous layers using a one-equation model. Interna-tional Journal of Heat Mass Transfer, 2001, vol. 44, pp. 4625–4633. DOI: 10.1016/S0017-9310(01)00102-8
Lyubimov D. V., Lyubimova T. P., Muratov I. D. Konkurentsiya dlinnovolnovoi i korotkovolnovoi neustoichivosti v trehsloinoi sisteme [Competition of long-wave and short-wave instabilities in three-layer system] Gidrodinamica (Hydrodynamics), 2002, no. 13, pp. 121-127. (In Russian)
Lyubimov D. V., Lyubimova T. P., Muratov I. D. Numerical study of the onset of convection in a horizontal fluid layer confined between two porous layers. Proceedings of International Conference “Advanced Problems in Thermal Convection”, 2004, pp. 105–109.
Hirata S. C., Goyeau B., Gobin D. Stability of thermosolutal natural convection in superposed fluid and porous layers. Transport in Porous Media, 2009, vol. 78, pp. 525-536. DOI: 10.1007/s11242-008-9322-9
Hill A. A., Carr M. Nonlinear stability of the one-domain approach to modelling convection in su-perposed fluid and porous layers. Proceedings of the Royal Society A, 2010, vol. 466, no. 2121, pp. 2695-2705. DOI: 10.1098/rspa.2010.0014
Chen F., Chen C. F. Convection in superposed flu-id and porous layers. Journal of Fluid Mechanics, 1992, vol. 234, pp. 97-119. DOI: 10.1017/S0022112092000715
Kolchanova E., Lyubimov D., Lyubimova T. The onset and nonlinear regimes of convection in a two-layer system of fluid and porous medium saturated by the fluid. Transport in Porous Media, 2013, vol. 97, no. 1, pp. 25–42. DOI: 10.1007/s11242-012-0108-8
Chen F., Hsu L. H. Onset of thermal convection in a anisotropic and inhomogeneous porous layer un-derlying a fluid layer. Journal of Applied Physics, 1991, vol. 69, pp. 6289. DOI: 10.1063/1.348827
Si-Cheng Z., Qiu-Sheng L., Henri N.-T., Bernard B. Gravity-driven instability in a liquid film overlying an inhomogeneous porous layer. Chinese Physics Letters, 2011, vol. 28, no. 2, pp. 024702. DOI: 10.1088/0256-307X/28/2/024702
Carman P. C. Fluid flow through granular beds. Transactions of the Institution of Chemical Engi-neers, 1937, vol. 15, pp. S32–S48.
Fand R. M., Kim B. Y. K., Lam A. C. C., Phan R. T. Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. Jour-nal of Fluids Engineering, 1987, vol. 109, pp. 268–273. DOI: 10.1115/1.3242658
Bejan A. Convection Heat Transfer. New York: Wiley, 2013. 658p.
Downloads
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.