Steady flows excited by inertial modes in a librating cylinder
DOI:
https://doi.org/10.17072/1994-3598-2018-4-67-73Keywords:
inertial waves, inertial modes, steady flow, rotation, librationsAbstract
Steady flow excited by oscillatory motion of the fluid in a non-uniformly rotating (librating) cylinder is experimentally investigated. Librations lead to the propagation of inertial waves, which are born near the junction of the side and end walls of the cavity. As a result of multiple reflections from the cavity walls, the inertial waves experience a spatial resonance, exciting so-called inertial modes. The latter are a system of vortices in which the direction of rotation of the fluid varies during the period of librations. It is found that the oscillatory motion in the fluid bulk leads to the appearance of intense steady flow in the Stokes boundary layer on the side wall of the cylinder. The flow structure has the form of a system of averaged toroidal vortices located along the entire side cavity wall. The number of vortices is determined by the axial wave number of the excited mode and does not depend on the radial wave number. It is shown that the intensity of the steady flow is proportional to the square of the libration amplitude and strongly depends on the number of the mode.References
Greenspan H. P. The Theory of Rotating Fluids. Cambridge: University Press, 1968, 328 p.
Messio L., Morize C., Rabaud M., Moisy F. Experimental observation using particle image velocimetry of inertial waves in a rotating fluid. Experiments in Fluids, 2008, vol. 44, pp. 519–528. DOI: 10.1007/s00348-007-0410-3.
Boisson J., Lamriben C., Maas L. R. M., Cortet P., Moisy F. Inertial waves and modes excited by the libration of a rotating cube. Physics of Fluids, 2012, vol. 24, 076602. DOI: 10.1063/1.4731802.
Margot J. L., Peale S. J., Jurgens R. F., Slade M. A., Holin I. V. Large longitude libration of Mercury reveals a molten core. Science, 2007, vol. 316, pp. 710–714. DOI: 10.1126/science.1140514.
Sauret A., Cébron D., Le Bars M., Le Dizès S. Fluid flows in a librating cylinder. Physics of Fluids, 2012, vol. 24, 026603. DOI: 10.1063/1.3680874.
Borcia I. D., Abouzar G. V., Harlander U. Inertial wave mode excitation in a rotating annulus with partially librating boundaries. Fluid Dynamics Research, 2014, vol. 46, 041423. DOI: 10.1088/0169-5983/46/4/041423.
Subbotin S., Dyakova V. Inertial waves and steady flows in a liquid filled librating cylinder. Microgravity Science and Technology, 2018, vol. 30, iss. 4, pp. 383–392. DOI: 10.1007/s12217-018-9621-x.
Morize C., Le Bars M., Le Gal P., Tilgner A. Experimental determination of zonal winds driven by tides. Physical Review Letters, 2010, vol. 104, 214501. DOI: 10.1103/PhysRevLett.104.214501.
Tilgner A. Zonal wind driven by inertial modes. Physical Review Letters, 2007, vol. 99, 194501. DOI: 10.1103/PhysRevLett.99.194501.
Favier B., Barker A., Baruteau C., Ogilvie G. Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Monthly Notices of the Royal Astronomical Society, 2014, vol. 439, pp. 845–860. DOI: 10.1093/mnras/stu003.
Kozlov V., Polezhaev D. Flow patterns in a rotating horizontal cylinder partially filled with liquid. Physical Review E, 2015, vol. 92, 013016. DOI: 10.1103/PhysRevE.92.013016.
Thielicke W., Stamhuis E. J. PIVlab – Time-resolved digital particle image velocimetry tool for MATLAB (version: 1.43). Journal of Open Research Software. 2014, vol. 2 (1), e30. DOI: 10.5334/jors.bl.
Noir J., Calkins M. A., Lasbleis M., Cantwell J., Aurnou J. M. Experimental study of libration-driven zonal flows in a straight cylinder. Physics of the Earth and Planetary Interiors. 2010, vol. 182, pp. 98–106. DOI: 10.1016/j.pepi.2010.06.012.
Le Bars M., Cébron D., Le Gal P. Flows driven by libration, precession, and tides. Annual Review of Fluid Mechanics. 2015, vol. 47, pp. 163–193. DOI: 10.1146/annurev-fluid-010814-014556.
Riley N. Steady streaming. Annual Review of Fluid Mechanics. 2001, vol. 33, pp. 43–65. DOI: 10.1146/annurev.fluid.33.1.43.
Busse F. H. Zonal flow induced by longitudinal librations of a rotating cylindrical cavity. Physica D. 2011, vol. 240, pp. 208–211. DOI: 10.1016/j.physd.2010.09.010.
Wang C. Y. Cylindrical tank of fluid oscillating about a steady rotation. Journal of Fluid Mechanics. 1970, vol. 41, pp. 581–592. DOI: 10.1017/S0022112070000769.
Downloads
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.