Towards the description of collective dynamics in ensembles of real oscillators

Authors

  • Денис Сергеевич Голдобин (Denis S. Goldobin) Institute of Continuous Media Mechanics UB RAS
  • Ирина Валерьевна Тюлькина (Irina V. Tyulkina) Perm State University
  • Людмила Сергеевна Клименко (Lyudmila S. Klimenko) Institute of Continuous Media Mechanics UB RAS
  • Аркадий Самуилович Пиковский (Arkady S. Pikovsky) University of Potsdam

DOI:

https://doi.org/10.17072/1994-3598-2018-3-05-07

Keywords:

Watanabe–Strogatz theory, Ott–Antonsen theory, ensembles of real oscillators

Abstract

Recently the authors of this brief communication developed the approach which allowed to extend the Ott–Antonsen theory to the case of non-ideal oscillator ensembles in a regular way. In this communication we explain why in the theory of collective phenomena and self-organization the systems of Ott–Antonsen type are of the primary significance, and why the extension of the Ott–Antonsen theory to the case of non-ideal systems—for real systems the applicability conditions of the Ott–Antonsen theory are fulfilled only approximately—was so much non-trivial but important.

References

Pikovsky A., Rosenblum M., Kurths J. Synchronization—A Unified Approach to Nonlinear Science. Cambridge: Cambridge University Press, 2001.

Watanabe S., Strogatz S. H. Constants of motion for superconducting Josephson arrays. Physica D, 1994, vol. 74, pp. 197–253.

Ott E., Antonsen T. M. Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 2008, vol. 18, 037113.

Kuramoto Y. Chemical Oscillations, Waves and Turbulence. Berlin: Springer, 1984.

Acebrón J. A., Bonilla L. L., Vicente C. J. P., Ritort F., Spigleri R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, vol. 77, no. 1, pp. 137–185.

Goldobin D. S., Dolmatova A. V., Rosenblum M., Pikovsky A. Synchronization in Kuramoto–Sakaguchi ensembles with competing influence of common noise and global coupling. Izvestiya VUZ. Applied Nonlinear Dynamics. 2017, vol. 25, iss. 6, pp. 5–37. DOI: 10.18500/0869-6632-2017-25-6-5-37

Chapman S., Cowling T. G. The mathematical theory of non-uniform gases. Cambridge: Cambridge University Press, 1952.

Tyulkina I. V., Goldobin D. S., Klimenko L. S., Pikovsky A. Dynamics of Noisy Oscillator Populations beyond the Ott–Antonsen Ansatz. Physical Review Letters, 2018, vol. 120, no. 26, 264101.

URL: https://twitter.com/stevenstrogatz/status/

Published

2018-11-21

How to Cite

Голдобин (Denis S. Goldobin) Д. С., Тюлькина (Irina V. Tyulkina) И. В., Клименко (Lyudmila S. Klimenko) Л. С., & Пиковский (Arkady S. Pikovsky) А. С. (2018). Towards the description of collective dynamics in ensembles of real oscillators. Bulletin of Perm University. Physics, (3(41). https://doi.org/10.17072/1994-3598-2018-3-05-07

Issue

Section

Rapid Communications

Most read articles by the same author(s)