Convection of binary fluid in a two-layer system with variable porosity under finite-frequency vibrations
DOI:
https://doi.org/10.17072/1994-3598-2018-2-58-67Keywords:
бинарная жидкость, неоднородная пористая среда, двухслойная система, модуляция поля тяжести, вибрации, синхронные и субгармонические колебания жидкостиAbstract
We consider a linear stability problem for the mechanical equilibrium in a system of two horizontal layers, one of which is filled with a binary fluid and the other contains a porous medium saturated with the fluid under gravity field. The layers oscillate vertically, with finite frequency and amplitude. The porous medium is inhomogeneous in the direction transverse to the layers. Linear equilibrium distributions of temperature and concentration in the layers are given. Taking into account the Floquet theory, we find the regions of parametric instability of equilibrium with respect to synchronous and subharmonic perturbations for various frequencies and amplitudes of vibrations. The numerical solution of the problem is obtained on the basis of shooting method and Galerkin method. It is shown that synchronous convective oscillations arise in the system heated from below in the limiting case of high-frequency vibrations. These vibrations stabilize the fluid equilibrium state. Convection occurs in a resonant manner and the stability threshold lowers monotonically as the frequency of vibration decreases and its amplitude increases. The change in the type of instability from the short-wave to long-wave ones, which are typical for layered systems, is observed with the variation of porosity gradient and buoyancy ratio. The latter defines a relative contribution of the concentration difference to the fluid density gradient. Short-wave convective rolls locate in the binary fluid layer with a low buoyancy ratio and are features of the medium with the porosity decreasing with depth. Long-wave rolls penetrate pores of the medium, which is saturated with the binary fluid of a high buoyancy ratio and has the porosity increasing with depth. It is determined that the short-wave parametric instability develops at the lower vibration amplitudes than their values in the case of the long-wave instability. The subharmonic fluid oscillations in the pores are possible at the vibration amplitudes, which are an order of magnitude larger than the amplitudes for the appearance of such oscillations in the fluid layer overlying the porous medium.References
Gershuni G. Z., Zhukhovitskii E. M. Convective stability of incompressible fluids. Jerusalem: Keter Publishing House, 1976, 330 p.
Nield D., Bejan A. Convection in Porous Media. Cham, Switzerland: Springer, 2017. 988 p.
Chen F., Chen C. F. Onset of finger convection in a horizontal porous layer underlying a fluid layer. ASME Journal of Heat Transfer, 1988, vol. 110, no. 2, pp. 403–409. DOI: 10.1115/1.3250499
Zhao P., Chen C. F. Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model. International Journal of Heat Mass Transfer, 2001, vol. 44, pp. 4625–4633. DOI: 10.1016/S0017-9310(01)00102-8
Hirata S. C., Goyeau B., Gobin D. Stability of thermosolutal natural convection in superposed fluid and porous layers. Transport in Porous Media, 2009, vol. 78, pp. 525–536. DOI: 10.1007/s11242-008-9322-9
Chen F. Salt-finger instability in an anisotropic and inhomogeneous porous substrate underlying a fluid layer. Journal of Applied Physics, 1992, vol. 71, pp. 5222–5236. DOI: 10.1063/1.350579
Chen C. F., Chen F. Experimental study of directional solidification of aqueous ammonium chloride solution. Journal of Fluid Mechanics, 1991, vol. 227, pp. 567–586. DOI: 10.1017/S0022112091000253
Chen F., Lu J. W., Yang T. L. Convective instabil-ity in ammonium chloride solution directionally solidified from below. Journal of Fluid Mechanics, 1994, vol. 216, pp. 163–187. DOI: 10.1017/S002211209400251X
Worster G. Instabilities of the liquid and mushy regions during solidification of alloys. Journal of Fluid Mechanics, 1992, vol. 237, pp. 649–669. DOI: 10.1017/S0022112092003562
Jounet A., Bardan G. Onset of thermohaline convection in a rectangular porous cavity in the presence of vertical vibration. Physics of Fluids, 2001, vol. 13, pp. 3234–3246. DOI: 10.1063/1.1403337
Charrier-Mojtabi M. C., Razi Y. P., Maliwan K., Mojtabi A. Effect of vibration on the onset of double-diffusive convection in porous media. In: Ingham D. B., Pop I. (eds.) Transport Phenomena in Porous Media III. Oxford: Elsevier, 2005, pp. 261–286. DOI: 10.1016/B978-008044490-1/50014-4
Myznikova B. I., Smorodin B. L. Convective stability of a horizontal binary-mixture layer in a modulated external force field. Fluid Dynamics, 2001, vol. 36, pp. 1–10. DOI: 10.1023/A:101881302
Smorodin B. L., Myznikova B. I., Legros J. C. Evolution of convective patterns in a binary-mixture layer subjected to a periodical change of the gravity field. Physics of Fluids, 2008, vol. 20, pp. 0941024. DOI: 10.1063/1.2978065
Lyubimova T. P., Kolchanova E. A. The onset of double-diffusive convection in a superposed fluid and porous layer under high-frequency and small-amplitude vibrations. Transport in Porous Media, 2018, vol. 122, pp. 97–124. DOI: 10.1007/s11242-017-0991-0
Kolchanova E. A., Kolchanov N. V. Convection excitation in a system of a binary solution layer and an inhomogeneous porous medium layer in the field of high-frequency vibrations. Computational continuum mechanics, 2017, vol. 10, no. 1, pp. 53–69. DOI: 10.7242/1999-6691/2017.10.1.5
Kolchanova E. A., Kolchanov N. V. Vibration effect on double-diffusive instability in an inhomogeneous porous layer underlying a binary fluid layer. International Journal of Heat and Mass Transfer, 2018, vol. 117, pp. 627–644. DOI: 10.1016/j.ijheatmasstransfer.2017.10.034
Carman P. C. Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers, 1937, vol. 15, pp. S32–S48.
Gershuni G. Z., Lyubimov D. V. Thermal Vibrational Convection. New York: Wiley, 1998. 358 p.
Lobov N. I., Lyubimov D. V., Lyubimova T. P. Chislennie metodi resheniya zadach teorii gidrodinamicheskoi ustoichivosti (Numerical methods of solving the problems of the hydrodynamical stability theory): tutorial. Perm: Perm University Press, 2004. 101 p. (In Russian).
Downloads
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.