On the repressilator stability with time-delayed gene expression
DOI:
https://doi.org/10.17072/1994-3598-2018-2-75-87Keywords:
репрессилятор, запаздывание, колебания, математическая биологияAbstract
The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed at Harvard University in 2000. It is a closed network of three genetic elements lacI, λcI and tetR, which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription / translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of many time scales, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov-Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.References
Prasher D. C., Eckenrode V. K., Ward W. W., Prendergast F. G., Cormier M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, vol. 111, no. 2, pp. 229–33. DOI: 10.1016/0378-1119(92)90691-H
Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, vol. 403, pp. 335–338. DOI: 10.1038/35002125
Gao X. J., Elowitz M. B. Synthetic biology: Precision timing in a cell. Nature, 2016, vol. 538, pp. 462–463.
Hasty J., Dolnik M., McMillen D., Collins J. J. Designer gene networks: Towards fundamental cellular control. Chaos, 2001, vol. 11, pp. 207–220. DOI: 10.1063/1.1345702
Friedland A. E., Lu T. K., Wang X., Shi D., Church G., Collins J. J. Synthetic gene networks that count. Science, 2009, vol. 324, pp. 1199–1202. DOI: 10.1126/science.1172005
Daniel R., Rubens J. R., Sarpeshkar R., Lu T. K. Synthetic analog computation in living cells. Nature, 2013, vol. 497, pp. 619–623. DOI: 10.1038/nature12148
Bonnet J., Yin P., Ortiz M. E., Subsoontorn P., Endy, D. Amplifying genetic logic gates. Science, 2013, vol. 340, pp. 599–603. DOI: 10.1126/science.1232758
Tabor J. J., Salis H. M., Simpson Z. B., Chevalier A. A., Levskaya A., Marcotte E. M., Voigt C. A., Ellington A. D. A synthetic genetic edge detection program. Cell, 2009, vol. 137, pp. 1272–1281. DOI: 10.1016/j.cell.2009.04.048
Fung E., Wong W. W., Suen J. K., Bulter T., Lee S., Liao J. C. A synthetic gene-metabolic oscillator. Nature, 2005, vol. 435, pp. 118–122. DOI: 10.1038/nature0350
Stricker J., Cookson S., Bennett M. R., Mather W. H., Tsimring L.S., Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature, 2008. vol. 456, pp. 516–519. DOI: 10.1038/nature07389
Tigges M., Marquez-Lago T. T., Stelling J., Fussenegger M. A tunable synthetic mammalian oscillator. Nature, 2009, vol. 457, pp. 309–312. DOI: 10.1038/nature07616
Potvin-Trottier L., Lord N. D., Vinnicombe G., Paulsson J. Synchronous long-term oscillations in a synthetic gene circuit. Nature, 2016, vol. 538, pp. 514–517. DOI: 10.1038/nature19841
Likhoshvai V. A., Kolchanov N. A., Khleboda-rova T. M. Komp'yuternyj resurs “Geneticheskij konstruktor” dlya modelirovaniya molekulyarno-geneticheskix protsessov v bakterial'noj kletke: analiz tsiklicheskoj gennoj tsepi. Rol' mikroor-ganizmov v funktsionirovanii zhivyx sistem: fundamental'nye problemy i bioinzhenernye prilozhenija (Computer resource “Genetic constructor” for modeling molecular genetic processes in bacterial cells: analysis of cyclic genetic chain. Role of microorganisms in the functioning of living systems: fundamental problems and bioengineering applications). Novosibirsk: SB RAS, 2010. P. 392–404 (in Russian).
Danino T., Mondragón-Palomino O., Tsimring L., Hasty J. A synchronized quorum of genetic clocks. Nature, 2010, no. 463, pp. 326–330. DOI: 10.1038/nature08753
Prindle A. Optimization of a gene oscillator using transcriptional time delay. Senior thesis, Sup. R. Murrey, California Institute of Technology, Pasadena, 2009.
Likhoshvai V. A., Matushkin Yu.G., Fadeev S. I. Problems in the theory of the functioning of genetic networks. Journal of Applied and Industrial Mathematics, 2003, vol. 6, no. 2, pp. 64–80.
Bratsun D., Volfson D., Hasty J., Tsimring L. Delay-induced stochastic oscillations in gene regulation. Proceedings of the National Academy of Sciences, 2005, vol. 102, no. 41, pp. 14593–14598. DOI: 10.1073/pnas.0503858102
Bratsun D., Volfson D., Hasty J., Tsimring L. Non-Markovian processes in gene regulation. Proceedings of SPIE, 2005, vol. 5845, pp. 210–219. DOI: 10.1117/12.609707
Bratsun D.A. Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part I. Regulation of gene expression. Computer Research and Modeling, 2011, vol. 3, no. 4, pp. 421–438 (in Russian).
Denault D., Loros J., Dunlap J. WC-2 mediates WC-1–FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J., 2001, vol. 20, pp. 109–117. DOI: 10.1093/emboj/20.1.109
Sriram K., Gopinathan M. S. A two variable delay model for the circadian rhythm of Neurospora crassa. J. Theor. Biol., 2004, vol. 231, pp. 23–38. DOI: 10.1016/j.jtbi.2004.04.006
Bratsun D. A. Modelling spatio-temporal dynamics of circadian rhythms in Neurospora crassa. Computer Research and Modeling, 2011, vol. 3, no. 2, pp. 191–213 (in Russian).
Zakharov A. P., Bratsun D. A. Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism. Computer Research and Modeling, 2013, vol. 5, no. 2, pp. 255–270 (in Russian).
Bratsun D.A, Zakharov A. P., Pismen L. M. Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue. Computer Research and Modeling, 2014, vol. 6, no. 4, pp. 585–604 (in Russian).
Bratsun D. A., Zakharov A. P., Pismen L. M. Chemo-mechanical elastic modeling of carcinoma development. Advanced Biomaterials and Devices in Medicine, 2016, vol. 3, no. 1, pp. 19–29.
Bratsun D. A., Merkuriev D. V., Zakharov A. P., Pismen L. M. Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue. Journal of Biological Physics, 2016, vol. 42, no. 1, pp. 107–132. DOI: 10.1007/s10867-015-9395-y
Demidenko G. V., Kolchanov N. A., Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I. Mathematical modeling of regular circuits of gene networks. Computational Mathematics and Mathematical Physics, 2004, vol. 44, no. 12, pp. 2166–2183.
Murray J. D. Mathematical biology: I. An introduction. Springer–Verlag, 1979. 767 p
Downloads
Published
How to Cite
Issue
Section
License
Автор предоставляет Издателю журнала (Пермский государственный национальный исследовательский университет) право на использование его статьи в составе журнала, а также на включение текста аннотации, полного текста статьи и информации об авторах в систему «Российский индекс научного цитирования» (РИНЦ).
Автор даёт своё согласие на обработку персональных данных.
Право использования журнала в целом в соответствии с п. 7 ст. 1260 ГК РФ принадлежит Издателю журнала и действует бессрочно на территории Российской Федерации и за её пределами.
Авторское вознаграждение за предоставление автором Издателю указанных выше прав не выплачивается.
Автор включённой в журнал статьи сохраняет исключительное право на неё независимо от права Издателя на использование журнала в целом.
Направление автором статьи в журнал означает его согласие на использование статьи Издателем на указанных выше условиях, на включение статьи в систему РИНЦ, и свидетельствует, что он осведомлён об условиях её использования. В качестве такого согласия рассматривается также направляемая в редакцию справка об авторе, в том числе по электронной почте.
Редакция размещает полный текст статьи на сайте Пермского государственного национального исследовательского университета: http://www.psu.ru и в системе OJS на сайте http://press.psu.ru
Плата за публикацию рукописей не взимается. Гонорар за публикации не выплачивается. Авторский экземпляр высылается автору по указанному им адресу.