On the repressilator stability with time-delayed gene expression

Authors

  • Дмитрий Анатольевич Брацун (Dmitry Bratsun) Perm National Research Polytechnic University
  • Евгений Сергеевич Лоргов (Evgenii Lorgov) Perm National Research Polytechnic University
  • Александр Олегович Полуянов (Alexander Poluyanov) Perm National Research Polytechnic University

DOI:

https://doi.org/10.17072/1994-3598-2018-2-75-87

Keywords:

репрессилятор, запаздывание, колебания, математическая биология

Abstract

The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed at Harvard University in 2000. It is a closed network of three genetic elements lacI, λcI and tetR, which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription / translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of many time scales, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov-Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.

References

Prasher D. C., Eckenrode V. K., Ward W. W., Prendergast F. G., Cormier M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, vol. 111, no. 2, pp. 229–33. DOI: 10.1016/0378-1119(92)90691-H

Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, vol. 403, pp. 335–338. DOI: 10.1038/35002125

Gao X. J., Elowitz M. B. Synthetic biology: Precision timing in a cell. Nature, 2016, vol. 538, pp. 462–463.

Hasty J., Dolnik M., McMillen D., Collins J. J. Designer gene networks: Towards fundamental cellular control. Chaos, 2001, vol. 11, pp. 207–220. DOI: 10.1063/1.1345702

Friedland A. E., Lu T. K., Wang X., Shi D., Church G., Collins J. J. Synthetic gene networks that count. Science, 2009, vol. 324, pp. 1199–1202. DOI: 10.1126/science.1172005

Daniel R., Rubens J. R., Sarpeshkar R., Lu T. K. Synthetic analog computation in living cells. Nature, 2013, vol. 497, pp. 619–623. DOI: 10.1038/nature12148

Bonnet J., Yin P., Ortiz M. E., Subsoontorn P., Endy, D. Amplifying genetic logic gates. Science, 2013, vol. 340, pp. 599–603. DOI: 10.1126/science.1232758

Tabor J. J., Salis H. M., Simpson Z. B., Chevalier A. A., Levskaya A., Marcotte E. M., Voigt C. A., Ellington A. D. A synthetic genetic edge detection program. Cell, 2009, vol. 137, pp. 1272–1281. DOI: 10.1016/j.cell.2009.04.048

Fung E., Wong W. W., Suen J. K., Bulter T., Lee S., Liao J. C. A synthetic gene-metabolic oscillator. Nature, 2005, vol. 435, pp. 118–122. DOI: 10.1038/nature0350

Stricker J., Cookson S., Bennett M. R., Mather W. H., Tsimring L.S., Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature, 2008. vol. 456, pp. 516–519. DOI: 10.1038/nature07389

Tigges M., Marquez-Lago T. T., Stelling J., Fussenegger M. A tunable synthetic mammalian oscillator. Nature, 2009, vol. 457, pp. 309–312. DOI: 10.1038/nature07616

Potvin-Trottier L., Lord N. D., Vinnicombe G., Paulsson J. Synchronous long-term oscillations in a synthetic gene circuit. Nature, 2016, vol. 538, pp. 514–517. DOI: 10.1038/nature19841

Likhoshvai V. A., Kolchanov N. A., Khleboda-rova T. M. Komp'yuternyj resurs “Geneticheskij konstruktor” dlya modelirovaniya molekulyarno-geneticheskix protsessov v bakterial'noj kletke: analiz tsiklicheskoj gennoj tsepi. Rol' mikroor-ganizmov v funktsionirovanii zhivyx sistem: fundamental'nye problemy i bioinzhenernye prilozhenija (Computer resource “Genetic constructor” for modeling molecular genetic processes in bacterial cells: analysis of cyclic genetic chain. Role of microorganisms in the functioning of living systems: fundamental problems and bioengineering applications). Novosibirsk: SB RAS, 2010. P. 392–404 (in Russian).

Danino T., Mondragón-Palomino O., Tsimring L., Hasty J. A synchronized quorum of genetic clocks. Nature, 2010, no. 463, pp. 326–330. DOI: 10.1038/nature08753

Prindle A. Optimization of a gene oscillator using transcriptional time delay. Senior thesis, Sup. R. Murrey, California Institute of Technology, Pasadena, 2009.

Likhoshvai V. A., Matushkin Yu.G., Fadeev S. I. Problems in the theory of the functioning of genetic networks. Journal of Applied and Industrial Mathematics, 2003, vol. 6, no. 2, pp. 64–80.

Bratsun D., Volfson D., Hasty J., Tsimring L. Delay-induced stochastic oscillations in gene regulation. Proceedings of the National Academy of Sciences, 2005, vol. 102, no. 41, pp. 14593–14598. DOI: 10.1073/pnas.0503858102

Bratsun D., Volfson D., Hasty J., Tsimring L. Non-Markovian processes in gene regulation. Proceedings of SPIE, 2005, vol. 5845, pp. 210–219. DOI: 10.1117/12.609707

Bratsun D.A. Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part I. Regulation of gene expression. Computer Research and Modeling, 2011, vol. 3, no. 4, pp. 421–438 (in Russian).

Denault D., Loros J., Dunlap J. WC-2 mediates WC-1–FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J., 2001, vol. 20, pp. 109–117. DOI: 10.1093/emboj/20.1.109

Sriram K., Gopinathan M. S. A two variable delay model for the circadian rhythm of Neurospora crassa. J. Theor. Biol., 2004, vol. 231, pp. 23–38. DOI: 10.1016/j.jtbi.2004.04.006

Bratsun D. A. Modelling spatio-temporal dynamics of circadian rhythms in Neurospora crassa. Computer Research and Modeling, 2011, vol. 3, no. 2, pp. 191–213 (in Russian).

Zakharov A. P., Bratsun D. A. Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism. Computer Research and Modeling, 2013, vol. 5, no. 2, pp. 255–270 (in Russian).

Bratsun D.A, Zakharov A. P., Pismen L. M. Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue. Computer Research and Modeling, 2014, vol. 6, no. 4, pp. 585–604 (in Russian).

Bratsun D. A., Zakharov A. P., Pismen L. M. Chemo-mechanical elastic modeling of carcinoma development. Advanced Biomaterials and Devices in Medicine, 2016, vol. 3, no. 1, pp. 19–29.

Bratsun D. A., Merkuriev D. V., Zakharov A. P., Pismen L. M. Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue. Journal of Biological Physics, 2016, vol. 42, no. 1, pp. 107–132. DOI: 10.1007/s10867-015-9395-y

Demidenko G. V., Kolchanov N. A., Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I. Mathematical modeling of regular circuits of gene networks. Computational Mathematics and Mathematical Physics, 2004, vol. 44, no. 12, pp. 2166–2183.

Murray J. D. Mathematical biology: I. An introduction. Springer–Verlag, 1979. 767 p

Published

2018-07-13

How to Cite

Брацун (Dmitry Bratsun) Д. А., Лоргов (Evgenii Lorgov) Е. С., & Полуянов (Alexander Poluyanov) А. О. (2018). On the repressilator stability with time-delayed gene expression. Bulletin of Perm University. Physics, (2(40). https://doi.org/10.17072/1994-3598-2018-2-75-87

Issue

Section

Regular articles

Most read articles by the same author(s)