Electrovortex flow of liquid metal in cylindrical channel

Authors

  • Сергей Дмитриевич Мандрыкин (Sergei D. Mandrykin) Institute of Continuous Media Mechanics
  • Геннадий Леонидович Лосев (Gennadii L. Losev) Institute of Continuous Media Mechanics
  • Илья Владимирович Колесниченко (Ilya V. Kolesnichenko) Institute of Continuous Media Mechanics
  • Петр Готлобович Фрик (Peter Frick) Institute of Continuous Media Mechanics

DOI:

https://doi.org/10.17072/1994-3598-2018-2-20-27

Keywords:

электровихревое течение, магнитная гидродинамика, жидкий металл

Abstract

Results of an experimental study of an electro-vortex flow of gallium alloy, generated in a cylindrical channel by electric current poles localized at the side walls, are presented. With the help of an ultrasonic Doppler anemometer, the velocity profiles of liquid metal currents are obtained for different current values and for different locations of the sensors. It is shown, that electro-vortex flows appear in all considered range of the electric current. The flow velocities are low (maximum average bulk velocity is 40 mm/s), but the flows themselves are non-stationary at all considered parameters. The characteristics of fluctuations are determined depending on the applied current. It is shown that even at the lowest currents the flow is not symmetrical and its structure differs from that expected from the geometry of the channel and the location of the electrodes.

References

Boyarevich V. V., Freiberg Ia. Zh., Shilova E. .V., Shcherbinin E. V. Elektrovikhrevye techeniia (Electroconvective flows). Riga: Zinatne, 1985. 315 p. (In Russian).

Khripchenko S. Yu. Elektrovikhrevye techeniia v kanalakh MGD-ustroistv (Electroconvective flows in channels of MHD devices). Ekaterinburg: UB RAS, 2009. 260 p. (In Russian).

Rabiger D., Zhang Y., Galindo V., Franke S., Willers B., Eckert S. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents. Acta Materialia, 2014, vol. 79, pp. 327–338.

Kazak O. V., Semko A. N. Electrovortex motion of a melt in DC furnaces with a bottom electrode. Journal of Engineering Physics and Thermophysics, 2011, vol. 84, no. 1, pp. 223–231.

Kazak O. Modeling of vortex flows in direct current (DC) electric arc furnace with different bottom electrode positions. Metallurgical and Materials Transactions B, 2013, vol. 44. no. 5, pp. 1243–1250.

Kazak O. Numerical modelling of electrovortex and heat flows in DC electric arc furnace with cooling bottom electrode. Heat and Mass Transfer, 2013, vol. 50, no. 5, pp. 685–692.

Weber N., Galindo V., Priede J., Stefani F., Weier T. The influence of current collectors on Tayler instability and electrovortex flows in liquid metal batteries. Physics of Fluids, 2015, vol. 27, no. 1, 014103.

Vinogradov D. A., Teplyakov I. O., Ivochkin Y. P., Klementeva I. B. Influence of the external magnetic field on hydrodynamic structure of the electrovortex flow in hemispherical container. Journal of Physics: Conference Series, 2017, vol. 899, no. 8, 082006.

Weber N., Galindo V., Stefani F., Weier T. Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them. Journal of Power Sources, 2014, vol. 265, pp. 166–173.

Sneyd A. D., Wang A. MHD driven instabilities in aluminium reduction cells. Magnetohydrodynamics, 1996, vol. 32, no. 4, pp. 487–493.

Dement'ev S. B., Chaikovskii A. I., Chudnovskii A. Yu. Generation of electrovortex flows in liquid-metal baths with a multielectrode current input. Magnetohydrodynamics, 1988, vol. 24, no. 1, pp. 45–49.

Pedchenko A., Molokov S., Priede J., Lukyanov A., Thomas P. J. Experimental model of the interfacial instability in aluminium reduction cells. Europhysics Letters, 2009, vol. 88, no. 2, 24001.

Khripchenko S. Yu. Generation of large-scale vortical structures by small-scale helical turbulence in a fat layer. Magnetohydrodynamics, 1991, vol. 27, no. 4, pp. 77–83.

Cruz Gomez R. C., Zavala Sanson L., Pinilla M. A. Generation of isolated vortices in a rotating fluid by means of an electromagnetic method. Experiments in Fluids, 2013, vol. 54, 1582.

Kolesnichenko I., Frick P. Conducting fluid flow in a helical magnetic field. Magnetohydrodynamics, 2009, vol. 45, no. 2, pp. 165–171.

Sokolov D. D., Stepanov R. A., Frick P. G. Dynamo: from an astrophysical model to laboratory experiments. Physics–Uspekhi, 2014, vol. 57, pp. 292–311.

Kolesnichenko I., Khalilov R., Shestakov A., Frick P. ICMM two-circuit sodium loop: a tool to study the mixing of flows with different temperature. Magnetohydrodynamics, 2016, vol. 52. no. 1, pp. 87–94.

Kolesnichenko I., Khripchenko S., Buchenau D., Gerbeth G. Electrovortex flows in a square layer of liquid metal. Magnetohydrodynamics, 2005, vol. 41, no. 1, pp. 39–51.

Published

2018-07-13

How to Cite

Мандрыкин (Sergei D. Mandrykin) С. Д., Лосев (Gennadii L. Losev) Г. Л., Колесниченко (Ilya V. Kolesnichenko) И. В., & Фрик (Peter Frick) П. Г. (2018). Electrovortex flow of liquid metal in cylindrical channel. Bulletin of Perm University. Physics, (2(40). https://doi.org/10.17072/1994-3598-2018-2-20-27

Issue

Section

Regular articles

Most read articles by the same author(s)