Лазерная 3D литография, области применения (обзор)

Авторы

  • Анатолий Анатольевич Отрощенко (Anatoliy Otroshchenko) Пермский государственный национальный исследовательский университет
  • Игорь Юрьевич Макарихин (Igor Yu. Makarikhin) Пермский государственный национальный исследовательский университет

DOI:

https://doi.org/10.17072/1994-3598-2017-2-9-19

Аннотация

В последние годы наблюдается тенденция миниатюризации сложных технических устройств, что в первую очередь связано с развитием практических методов производства технологических продуктов с заданной структурой, путём контролируемого манипулирования микро и наноэлементами. В данной статье рассматривается технология 3Dлазерной литографии, основанной на принципе двухфотонной полимеризации, разбирается технологическая база и основные принципы 3Dнанопечати. Обзорно представлены наиболее интересные и перспективные, по мнению авторов, направления использования лазерной 3Dлитографии по принципу двухфотонной полимеризации с применением различных фоточувствительных материалов.

Библиографические ссылки

Bertolotti M. The history of the laser. Boca Raton: CRC Press, 2004, 316 p.

Gogoleva N. G. Primenenie lazerov v nauke, tekhnike, meditsine (The use of lasers in science, technology, medicine). St. Petersburg, Russia: Saint Petersburg Electrotechnical University “LETI” 2007, 79 p. (In Russian)

Lysych M. N., Shabanov M. L., Romanov V. V. Sphere of technologies 3D printing. Journal of Modern high technology, 2014, vol. 12, pp. 165–169 (In Russian).

Zlenko M. A., Nagaytsev M. V., Dovbysh V. M. Additivnye tekhnologii v mashinostroenii (Additive technologies in mechanical engineering). Moscow, Russia: State Research Center of the Russian Federation FSUE “NAMI”, 2015, 220 p. (In Russian).

Sutyagin V. М., Bondaletova L. I. Khimiia i fizika polimerov (Chemistry and physics of polymers). Tomsk, Russia: Tomsk Polytechnic University, 2003, 208 p. (In Russian).

Zewail A. H. Voyage through time: walks of life to the Nobel Prize. Singapore: World Scientific, 2003. 304 p.

Guccione-Gush R., Gush H. P., van Kranendonk J. Theory of two-photon absorption. Canadian Journal of Physics, 1967, vol. 45, pp. 2513–2524.

Serbin J., Egbert A., Ostendorf A., Chichkov B. N., Houbertz R., Domann G., Schutz J., Cronauer C., Fröhlich L, Popall M. Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics. Optics Letters, 2003, vol. 28, no. 5, pp. 301–303.

Korkin A., Rosei F. Nanoelectronics and photon-ics: from atoms to materials, devices, and archi-tectures. National Research Council of Canada: Springer, 2008, 489 p.

Sun H.B., Kawata S. Two-photon photopolymeri-zation and 3D lithographic microfabrication. Ad-vances in Polymer Science, 2004, vol. 170, pp. 169–273. DOI:10.1007/b94405

Parthenopoulos D. A., Rentzepis P. M. Three-dimensional optical storage memory. Science, 2014, vol. 245, pp. 843–845.

DOI: 10.1126/science.245.4920.843

Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science, 1990, vol. 248, no. 4951, pp. 73–76.

Cingöz A., Yost D. C., Allison T. K., Ruehl A., Fermann M. E., Hartl I., Ye J. Direct frequency comb spectroscopy in the extreme ultraviolet. Na-ture, 2012, vol. 482, pp. 68–71.

DOI: 10.1038/nature10711

Menzel R. Photonics: linear and nonlinear inte-ractions of laser light and matter. Berlin: Springer, 2001, 880 p.

Bahaa E. A. Saleh, Teich M. C. Fundamentals of photonics. New York, USA: Wiley, 1991, 966 p.

Photonic Professional. User Manual. 2010–2013 Nanoscribe GmbH. 140 p.

Pikulin A. V., Bityurin N. M. Fluctuation limitations on the voxel minimal size at laser nanopolymerization. Technical Physics, 2012, vol. 82, no. 5, pp. 697–705.

Kholodov I. Vidy 3D printerov i trekhmernoi pechati (Types of 3D printers and three-dimensional printing). iXBT Live, 2014, URL: http://www.techno-guide.ru/informatsionnye-tekhnologii/3d-tekhnologii/vidy-3d-printerov-i-trekhmernoj-pechati.html (In Russian).

Meszaros J. Large area zone plate exposure by fixed beam moving stage lithography. Stockholm: KTH – Royal Institute of Technology, 2011, 24 p.

Tromayer M., Gruber P., Markovic M., Rosspeintner A., Vauthey E., Redl H., Ovsianikov A., Liskaa R. A biocompatible macromolecular two-photon initiator based on hyaluronan. Polymer Chemistry. 2017, vol. 8, no. 2, pp. 451–460. DOI:10.1039/c6py01787h

Plebanovich V. Maskless Lithography is a Current Requirement. Journal of Electronics: science, technology, business, 2015, no. 7, pp. 112–119 (In Russian).

Chi-Cheng Chiu, Yung-Chun Lee. Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method. Optics Express, 2012, vol. 20, no. 6, pp. 5817–5935. DOI: 10.1364/OE.20.005922

Walsby E. D., Alton J., Worrall C., Beere H. E., Ritchie D. A., Cumming D. R. S. Imprinted diffractive optics for terahertz radiation. Optics Letters, 2007, vol. 32, no. 9, pp. 1141–1143. DOI:10.1364/OL.32.001141

Xu B., Du W.-Q., Li J.-W., Hu Y.-L., Yang L., Zhang Ch.-Ch., Li G.-Q., Lao Zh.-X., Ni J.-Ch., Chu J.-R., Wu D., Liu S.-L., Sugioka K. High efficiency integration of three-dimensional functional micro-devices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Scientific Reports, 2016, vol. 6, 19989. DOI:10.1038/srep19989

Joannopoulos J. D., Johnson S. G., Winn J. N., Meade R. D. Photonic crystals: molding the flow of light. Princeton: Princeton University Press, 2008, 286 p.

Zhao J., Li X., Zhong L., Chen G. Calculation of photonic band-gap of one dimensional photonic crystal. Journal of Physics: Conference Series, 2009, vol. 183, 012018. DOI:10.1088/1742-6596/183/1/012018

Rybin M., Garrigues M., Pozharov A., Obraztsova E., Seassal C., Viktorovitch P. Photonic crystal enhanced absorbance of CVD graphene. GraphITA 2011. Carbon Nanostructures. Berlin: Springer, 2011, pp. 195–202. DOI:10.1007/978-3-642-20644-3_24

Ergin T., Stenger N., Brenner P., Pendry J.B., We-gener M. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, vol. 328, no. 5976, pp. 337–339. DOI:10.1126/science.1186351

Rybin M. V., Samusev K. B., Lukashenko S. Y., Kivshar Y. S., Limonov M. F. Transition from two-dimensional photonic crystals to dielectric meta-surfaces in the optical diffraction with a fine structure. Scientific Reports, 2016, vol. 6, pp. 30773. DOI: 10.1038/srep30773

Li L., Kumi G., Gattass R. R., Gershgoren E., Chen W. Y., Ho P.-T., Herman W. N., Fourkas J. T. Fabrication of high-performance optical devices using multiphoton absorption polymerization. Washington, DC: American Chemical Society, 2010, vol. 9, pp. 129–137.

Suter M., Zhang L., Siringil E. C., Peters C., Luehmann T., Ergeneman O., Peyer K. E., Nelson B. J., Hierold C. Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility. Biomedical Microdevices, 2013, vol. 15, no. 6, pp. 997–1003. DOI: 10.1007/s10544-013-9791-7

Glückstad J., Palima D., Villangca M., Banaso A. 3D light robotics. Proceedings of SPIE, 2016, vol. 9738, pp. 97380A-1.

Novikov V. V., Wojciechowski K. W. Negative Poisson coefficient of fractal structures. Physics of the Solid State, 1999, vol. 41, no. 12, pp. 1970–1975.

Mezaa L. R., Zelhofera A. J., Clarkeb N., Mateosa A. J., Kochmanna D. M., Greera J. R. Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences, 2015, vol. 112, no. 37, pp. 11502–11507. DOI:10.1073/pnas.1509120112

Bauera J., Hengsbach S., Tesaria I., Schwaigera R., Krafta O. High-strength cellular ceramic composites with 3D microarchitecture. Proceedings of the National Academy of Sciences, 2013, vol. 111, no. 7, pp. 2453–2458. DOI: 10.1073/pnas.1315147111

Stark A. Y., Palecek A. M., Argenbright C. W., Bernard C., Brennan A. B., Niewiarowski P. H., Dhinojwala A. Gecko adhesion on wet and dry patterned substrates. PLoS One, 2015, vol. 10, no. 12, e0145756.

Klein F., Richter B., Striebel T., Franz C. M., von Freymann G., Wegener M., Bastmeyer M. Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture. Advanced Materials, 2011, vol. 23, pp. 1341–1345. DOI:10.1002/adma.201004060

Загрузки

Опубликован

2017-10-23

Как цитировать

Отрощенко (Anatoliy Otroshchenko) А. А., & Макарихин (Igor Yu. Makarikhin) И. Ю. (2017). Лазерная 3D литография, области применения (обзор). Вестник Пермского университета. Физика, (2(36). https://doi.org/10.17072/1994-3598-2017-2-9-19

Выпуск

Раздел

Обзоры