Учет разупрочнения вблизи свободной поверхности в прямой модели физической теории пластичности
DOI:
https://doi.org/10.17072/1993-0550-2023-3-31-43Ключевые слова:
физические теории пластичности, прямая модель, монокристаллы, поликристаллы, дислокации, системы скольжения, свободная поверхность, разупрочнениеАннотация
Актуальные запросы промышленности требуют совершенствования существующих и создания новых технологий, позволяющих получать детали и конструкции с улучшенными эксплуатационными свойствами. Особенно важными являются вопросы проектирования и анализа процессов термомеханической обработки металлов и сплавов методами интенсивной неупругой деформации. Отдельного внимания заслуживает исследование процессов изготовления миниатюрных деталей, все более востребованных в различных технических устройствах. Возникающие при этом краевые задачи относятся к классу физически и геометрически нелинейных проблем механики деформируемого твердого тела, для решения которых необходимы разработки соответствующих математических моделей. Большинство классических моделей базируются на макрофеноменологической теории упругопластичности. Однако в ходе рассматриваемых процессов в исследуемых материалах происходят существенные структурные изменения на мезо- и микромасштабах, что определяющим образом влияет на физико-механические свойства обрабатываемых материалов и рабочие характеристики изделий, изменение которых не описываются указанными теориями. Эффективным подходом к описанию данных процессов представляется использование многоуровневых конститутивных моделей, в которых явным образом описываются физические механизмы неупругого деформирования и их носители на различных структурно-масштабных уровнях. Несмотря на наблюдаемую тенденцию к миниатюризации изделий, параметры для таких моделей, как правило, определяются из результатов натурных экспериментов, полученных в опытах на макрообразцах. Возникает вопрос о применимости таких параметров при анализе и моделировании реальных конструкций с характерными размерами до 500 мкм, где особую роль играют внутренние и внешние границы кристаллитов. В предлагаемой статье рассматривается влияние свободной поверхности на физико-механические характеристики образцов из моно- и поликристаллических материалов. Предложена модификация базовой прямой модели упруговязкопластичности мезоуровня, которая учитывает разупрочнение систем скольжения вблизи свободных границ за счет облегченного выхода дислокаций на поверхность.Библиографические ссылки
Поздеев А.А., Трусов П.В., Няшин Ю.И. Большие упругопластические деформации: теория, алгоритмы, приложения. М.: Наука, 1986. 232 с.
Ильюшин А.А. Пластичность. Основы общей математической теории. М.: АН СССР, 1963. 272 с.
Трусделл К. Первоначальный курс рациональной механики сплошных сред. М: Мир, 1975. 592 с.
Метлов Л.С., Мышляев М.М. Общие термо-динамические механизмы ИПД и сверхпластичности // Физика и техника высоких дав-лений. 2009. № 4. С. 57–69.
Трусов П. В., Швейкин А. И. Многоуровневые модели моно- и поликристаллических мате-риалов: теория, алгоритмы, примеры применения // Новосибирск: Издательство СО РАН, 2019. 605 с. DOI: 10.15372/MULTILEVEL2019TPV.
Трусов П.В., Волегов П.С. Физические теории пластичности: теория и приложения к описанию неупругого деформирования материалов. Ч. 1. Жесткопластические и упругопластические модели // Вестник ПГТУ. Механика. 2011. № 1. С. 5–45.
Трусов П.В., Волегов П.С. Физические теории пластичности: теория и приложения к описанию неупругого деформирования материалов. Ч. 2. Вязкопластические и упруговязкопластические модели // Вестник ПГТУ. Механика. 2011. № 2. С. 101–131.
Engel U., Eckstein R. Microforming–from basic research to its realization // Journal of Materials Processing Technology. 2002. Vol. 125–126. P. 35–44. DOI: 10.1016/S0924-0136(02)00415-6.
Трусов П.В. Классические и многоуровневые конститутивные модели для описания поведения металлов и сплавов: проблемы и перспективы (в порядке обсуждения) // Известия российской академии наук. Механика твердого тела. 2021. № 1. С. 69–82. DOI: 10.31857/S0572329921010128.
Arzt E. Size effects in materials due to micro-structural and dimensional constrains: a comparative // Acta Materialia. 1998. Vol. 46, Is. 16. P. 5611–5626. DOI: 10.1016/S1359-6454(98)00231-6.
Geiger M., Kleiner M., Eckstein R., Tiesler R., Engel U. Microforming // Annals of the CIRP. 2001. Vol. 5, Is. 50. P. 445–462. DOI: 10.1016/S0007-8506(07)62991-6.
Новиков И.И. Дефекты кристаллического строения металлов. М.: Металлургия, 1975. 208 с.
Фридель Ж. Дислокации. М.: Мир, 1967. 644 с.
Хирт Дж., Лоте И. Теория дислокаций. М.: Атомиздат, 1972. 600 с.
Keller C., Hug E. Hall–Petch behavior of Ni polycrystals with a few grains per thickness // Materials Letters. 2008. Vol. 62, Is. 10–11. P.1718–1720. DOI: 10.1016/j.matlet.2007. 09.069.
Keller C., Hug E., Chateigner D. On the origin of the stress decrease for nickel polycrystals with few grains across the thickness // Materials Science and Engineering: A. 2009. Vol. 500, Is. 1–2. P. 207–215. DOI: 10.1016/j.msea.2008.09.054.
Keller C., Hug E., Retoux R., Feaugas X. TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section // Mechanics of Materials. 2010. Vol. 42, Is. 1. P. 44–54. DOI: 10.1016/j.mechmat. 2009.09.002.
Keller C., Hug E., Feaugas X. Microstructural size effects on mechanical properties of high purity nickel // International Journal of Plasticity. 2011. Vol. 27, Is. 4. P. 637–654. DOI: 10.1016/j.ijplas.2010.08.002.
Hug E., Dubos P. A., Keller C. Temperature dependence and size effects on strain hardering mechanism in copper polycrystals // Materials Science and Engineering: A. 2013. Vol. 574. P. 253–261. DOI: 10.1016/j.msea. 2013.03.025.
Hug E., Keller C., Dubos P.A., Celis M.M. Size effects in cobalt plastically strained in tension: impact on gliding and twinning work hardering mechanisms // Journal of Materials Research and Technology. 2021. Vol. 11. P. 1362–1377. DOI: 10.1016/j.jmrt.2021.01.105.
Hall E.O. The deformation and aging of mild steel. III. Discussion and results // Proc. Phys. Soc. of London. 1951. Vol. B64. P. 747–753. DOI: 10.1088/0370-1301/64/9/303.N.
Petch N.J. The cleavage strength of polycrystalls // J. Iron and Steel Inst. 1953. Vol. 174. P. 25–28.
Jang D., Greer J. R. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars // Scripta Materialia. 2011. Vol. 64, Is. 1. P. 77–80. DOI: 10.1016/j.scriptamat.2010.09.010.
Yang B., Motz C., Rester M., Dehm G. Yield stress influenced by the ratio of wire diameter to grain size – a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires // Philosophical Magazine. 2012. Vol. 92, Is. 25–27. P. 3243–3256. DOI: 10.1080/14786435.2012.693215.
Shin C., Lim S., Jin H., Hosemann P., Kwon J. Specimen size effects on the weakening of a bulk metastable austenitic alloy // Materials Sci-ence and Engineering: A. 2015. Vol. 622. P. 67–75. DOI: 10.1016/j.msea.2014.11.004.
Теплякова Л.А., Лычагин Д.В., Козлов Э.В. Локализация сдвига при деформации моно-кристаллов алюминия с ориентацией оси сжатия [001] // Физическая мезомеханика. 2002. Т. 5. № 6. С. 49–55.
Теплякова Л.А., Лычагин Д.В., Беспалова И.В. Закономерности макролокализации деформации в монокристаллах алюминия с ориентацией оси сжатия [110] // Физическая мезомеханика. 2004. Т. 7, № 6. С. 63–78.
Лычагин Д.В., Теплякова Л.А., Шаехов Р.В., Конева Н.А., Козлов Э.В. Эволюция деформационного рельефа монокристаллов алюминия с ориентацией оси сжатия [001] // Физическая мезомеханика. 2003. Т. 6, №3. С. 75–83.
Liu W., Liu Y., Cheng Y., Chen L., Yu L., Yi X. Unified model for size-dependent to size-independent transition in yield strength of crystalline metallic materials // Physical Review Letters. 2020. Vol. 124, Is. 23. P. 235501. DOI: 10.1103/PhysRevLett. 124.235501.
Keller C., Hug E., Habraken A.M., Duchene L. Finite element analysis of the free surface effects on the mechanical behavior of thin nickel polycrystals // International Journal of Plasticity. 2012. Vol. 29. P. 155–172. DOI: 10.1016/j.ijplas.2011.08.007.
Yants A., Trusov P., Tokarev A. Direct crystal plasticity model for describing the deformation of samples of polycrystalline materials: influence of external and internal grain boundaries // Nanoscience and Technology: An International Journal. 2021. Vol. 12, Is. 2. P. 1–21. DOI: 10.1615/NanoSciTechnolIntJ. 2021036837.
Eshelby J.D., Stroh A.N. CXL. Dislocations in thin plates // The London, Edinburg, and Dublin Philosophical Magazine and Journal of Science. 1951. Vol. 42, Is. 335. P. 1401–1405. DOI: 10.1080/14786445108560958.
Head A.K. Edge dislocations in inhomogeneous media // Proceedings of the Physical Society. Section B. 1953. Vol. 66, Is. 9. P. 793–801. DOI: 10.1088/0370-1301/66/9/309.
Maurissen Y., Capella L. Stress field of a dislocation segment parallel to a free surface // Philosophical Magazine. 1973. Vol. 29, Is. 5. P. 1227–1229. DOI: 10.1080/14786437408 226608.
Maurissen Y., Capella L. Stress field of a dislocation segment perpendicular to a free surface // Philosophical Magazine. 1974. Vol. 30, Is. 3. P. 679–683. DOI: 10.1080/14786439808 206591.
Steketee J.A. On Volterra's dislocations in a semi-infinite elastic medium // Canadian Journal of Physics. 1958. Vol. 36. P. 192–205. DOI: 10.1139/p58–024.
Yoffe E.H. A dislocation at a free surface // Philosophical Magazine. 1961. Vol. 6, Is. 69. P. 1147–1155. DOI: 10.1080/14786436108 239675.
Shaibani S.J., Hazzledine P.M. The displacement and stress fields of a general dislocation close to a free surface of an isotropic solid // Philosophical Magazine A. 1981. Vol. 44, Is. 3. P. 657–665. DOI: 10.1080/01418618108 236168.
Lothe J., Indenbom V.L., Chamrov V.A. Elastic field and self-force of dislocations emerging at the free surfaces of an anisotropic halfspace // Physica Status Solidi (b). 1982. Vol. 111, Is. 2. P. 671–677. DOI: 10.1002/pssb. 2221110231.
Neily S., Dhouibi S., Bonnet R. Threading dislocations piercing the free surface of an anisotropic hexagonal crystal: review of theoretical approaches // Advances in Condensed Matter Physics. 2018. Vol. 2018. P. 1–8. DOI: 10.1155/2018/3038795.
Balusu K., Huang H. A combined dislocation fan-finite element (DF-FE) method for stress field simulation of dislocations emerging at the free surfaces of 3D elastically anisotropic crystals // Modelling and Simulation in Materials Science and Engineering. 2017. Vol. 25, Is. 3. P. 1–14. DOI: 10.1088/1361-651x/aa5a9d.
Crone J. C., Munday L. B., Knap J. Capturing the effects of free surfaces on void strengthening with dislocation dynamics // Acta Materialia. 2015. Vol. 101. P. 40–47. DOI: 10.1016/j.actamat.2015.08.067.
Asaro R. J., Needleman A. Texture development and strain hardening in rate dependent polycrys-tals // Acta Metall. 1985. Vol. 33, N 6. P. 923–953. DOI: 10.1016/0001-6160(85) 90188-9.
Estrin Y., Tóth L. S., Molinari A., Bréchet Y. A dislocation-based model for all hardening stages in large strain deformation // Acta mater. 1998. Vol. 46, N 15. P. 5509–5522. DOI: 10.1016/S1359-6454(98)00196-7.
Kalidindi S. R., Bronkhorst C. A., Anand L. Crystallographic texture evolution in bulk de-formation processing of FCC metals // J. Mech. Phys. Solids. 1992. Vol. 40, N 3. P. 537–569. DOI: 10.1016/0022-5096(92)80003-9.
Kocks U.F., Mecking H. Physics and phenomenology of strain hardening: the FCC case // Progress in Materials Science. 2003. Vol. 48. P. 171–273. DOI: 10.1016/S0079-6425(02)00003-8.
Van Houtte P., Li S., Seefeldt M., Delannay L. Deformation texture prediction: from the Taylor model to the advanced Lamel // Int. J. Plasticity. 2005. Vol. 21. P. 589–624. DOI: 10.1016/j.ijplas.2004.04.011.
Трусов П.В., Швейкин А.И. О разложении движения и определяющих соотношениях в геометрически нелинейной упруговязкопластичности кристаллитов // Физическая мезомеханика. 2016. Т. 19, № 3. С. 25–38.
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Яков Витальевич Вяткин, Татьяна Викторовна Останина, Петр Валентинович Трусов
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Публикация статьи в журнале осуществляется на условиях лицензии Creative Commons Attribution 4.0 International (CC BY 4.0).