Mathematical Methods Application in an Artificial Neural Network to Recognize "Fake" Emotions in the Voice

Authors

  • Ivan V. Bykov Perm State Univesity
  • Natalya Yu. Rotaneva Mariupol State University named after A.I. Kuindzhi
  • Alexander P. Shkaraputa Perm State Univesity

DOI:

https://doi.org/10.17072/1993-0550-2024-4-104-116

Keywords:

emotion recognition, fake emotions, basic emotions, musical interval, emotional state classifiers, prosody

Abstract

This paper proposes a methodology for comparing the emotional component of the voices of speakers actually experiencing emotions and those trying to reproduce them. The tech-nique assumes the use of as classifiers the ratio of frequencies of local maxima of the spectrum of the of a sound wave. In this work we studied 4 categories of basic emotions: anger, sadness, fear, joy. To obtain comparative characteristics in each category 30 records with "fake" and " true" emo-tion were investigated – 240 records in total. A statistical comparative analysis of the classifiers was performed and found a significant differences in the data for the genuine emotion and its imi-tation. Also, a model of an artificial neural network, based on which a program was created to recognize the emotional message contained in human voice recordings. On the trained artificial neural network, an experiment was conducted to determine the emotional state of the speaker and the truth or falsity of his emotional message. Testing of sound files with different emotions showed good results for recognizing both the emotional state of the speaker and the truthfulness or falsity of the speaker's emotional message.

References

Российские ученые создали RiskControl, который распознает ложь по голосу. https://www.computerra.ru – журнал "Компьютерра". 2021. [Электронный ресурс]. Ре-жим доступа: https://www.computerra.ru/275450/rossijskie-uchenye-sozdali-riskcontrol-kotoryj-raspoznaet-lozh-po-golosu/ (дата обращения: 19.11.2024).

Пеленицын А.Б., Степанов А.А. Что надо знать о так называемых "детекторах лжи по голосу". [Электронный ресурс] / А.Б. Пеленицын, А.А. Степанов. Электрон. текстовые дан. Режим доступа: http://poligraf.sp.ru/stati/abpelenicyn_aastepanov_de-tektory_lzhi_po_golosu.html, свободный (дата обращения: 19.11.2024).

Изард К.Э. Психология эмоций / пер. с англ. СПб: Изд-во "Питер", 1999. 464 с.

Shkaraputa, A., Kolcherina, A., Mishlanova, M. (2022). Determining of the Emotional State of a Person Using Computer Analysis of Sound Wave Parameters. In: Rocha, A., Isaeva, E. (eds) Science and Global Challenges of the 21st Century - Science and Technology. Perm Forum 2021. Lecture Notes in Networks and Systems, Vol. 342. Springer, Cham. https://doi.org/10.1007/978-3-030-89477-1_6.

Алимурадов А.К., Чураков П.П. Обзор и классификация методов обработки речевых сигналов в системах распознавания речи. Измерения. Мониторинг. Контроль. 2(12) 27-35 (2015).

Xuedong H. Spoken Language Processing: A Guide to Theory, Algorithm and System Development. Huang Xuedong. New Jersey. Prentice Hall PTR (2001).

Mehmet Cenk Sezgin, Bilge Gunsel & Gunes Karabulut Kurt. Perceptual audio features for emotion detection. EURASIP Journal on Audio, Speech, and Music Processing volume 2012, Article number: 16 (2012) https://doi.org/10.1186/1687-4722-2012-16.

Рахманенко И.А., Мещеряков Р.В. Анализ идентификационных признаков в речевых данных с помощью GMM-UBM верификации диктора. С-Пб.: Тр. СПИИРАН, 2017, С. 32–50.

Близнюк О.А., Шкарапута А.П. Исследование применения метода определения базовых эмоций на основе отношения частот спектра звуковой волны // Вестник Пермского университета. Математика. Механика. Информатика. 2017. Вып. 4(39). С. 86–91.

Published

2024-12-24

How to Cite

Bykov И. В., Rotaneva Н. Ю., & Shkaraputa А. П. (2024). Mathematical Methods Application in an Artificial Neural Network to Recognize "Fake" Emotions in the Voice. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (4 (67), 104–116. https://doi.org/10.17072/1993-0550-2024-4-104-116