Parametric Excitation of Concentration Convection in a Closed Region of a Porous Medium in the Presence of Solute Particle Immobilisation

Authors

  • Boris S. Maryshev Perm State Univesity, Instute of Continuous Media Mechanics UB RAS
  • Lyudmila. S. Klimenko Perm State Univesity, Instute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.17072/1993-0550-2024-4-46-64

Keywords:

Filtration, Transport in porous media, Convection, Immobilization, Modulated flow, Parametric instability excitation, Galerkin method, Control of convective flows

Abstract

Mathematical modelling of the effect of fluid flow modulation on concentration convection in a closed region of a porous medium taking into account the immobilisation of impurity on pore walls has been carried out. Transport of impurity taking into account the effect of immobilisation (deposition) of impurity particles on pore walls is modelled in the framework of MIM approach, filtration of mixture in a closed region is considered in the Darcy-Boussinesq approximation. As a result, an exact solution of the problem has been obtained; the present solution describes one-dimensional filtration in the horizontal direction through the considered closed region of the porous medium. The stability problem of the obtained exact solution is solved in linear approximation. The method of solving the stability problem is developed on the basis of the Galerkin approach. Neutral curves in the parameter space of the problem are constructed, and the synchronisation of perturbations with external flow modulation is studied. The possibility of controlling excited convective modes by modulating the external fluid flow (pumping) is described.

References

Horton C.W., Rogers Jr F.T. Convection currents in a porous medium // Journal of Applied Physics. 1945. Vol. 16, № 6. P. 367–370.

Lapwood E.R. Convection of a fluid in a porous medium //Mathematical Proceedings of the Cam-bridge Philosophical Society. Cambridge University Press, 1948. Vol. 44, № 4.P. 508–521.

Prats M. The effect of horizontal fluid flow on thermally induced convection currents in porous mediums // Journal of geophysical research. 1966. Vol. 71. № 20. P. 4835–4838.

Combarnous M.A., Bia P. Combined free and forced convection in porous media // SPE Journal. 1971. Vol. 11, № 4. P. 399–405. URL: https://doi.org/10.2118/3192-PA (дата обращения: 20.10.2024).

Haajizadeh M., Tien C. L. Combined natural and forced convection in a horizontal porous channel // Int. J. Heat Mass Transf. 1984. Vol. 27, № 6. P. 799–813. URL: https://doi.org/10.1016/0017-9310(84)90001-2 (дата обращения: 20.10.2024).

Chou F. C., Chung P. Y. Effect of stagnant conductivity on non-Darcian mixed convection in horizontal square packed channels // Numer. Heat Transf.; A: Appl. 1995. Vol. 27, № 2. P. 195–209.

Марышев Б. С. Концентрационная конвекция в замкнутой области пористой среды при заданном вертикальном перепаде концентрации и учете иммобилизации примеси // Вычислительная механика сплошных сред. 2024. Т. 17, № 1. С. 60–74.

Bromly M., Hinz C. Non‐Fickian transport in homogeneous unsaturated repacked sand // Water Resour. Res. 2004. Vol. 40. W07402. URL: https://doi.org/10.1029/2003WR002579 (дата обращения: 20.10.2024).

Gouze P. et al. Non‐Fickian dispersion in porous media: 1. Multiscale measurements using single‐well injection withdrawal tracer tests // Water Resour. Res. 2008. Vol. 44. W06426. URL: https://doi.org/10.1029/2007WR006278 (дата обращения: 20.10.2024).

Wissocq A., Beaucaire C., Latrille C. Application of the multi-site ion exchanger model to the sorption of Sr and Cs on natural clayey sandstone // Appl. Geochemistry. 2018. Vol. 93. P. 167–177. URL: https://doi.org/10.1016/j.apgeochem.2017.12.010 (дата обращения: 20.10.2024).

Einstein A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat // Annalen der physic. 1905. Vol. 17. P. 549–560. URL: https://doi.org/10.1002/andp.19053220806 (дата обращения: 20.10.2024).

Deans H.A. A mathematical model for dispersion in the direction of flow in porous media // SPE Journal. 1963. Vol. 3, № 1. P. 49–52. URL: https://doi.org/10.2118/493-PA (дата обращения: 20.10.2024).

Maryshev B. S. The effect of sorption on linear stability for the solutal Horton–Rogers–Lapwood problem //Transport in Porous Media. 2015. Vol. 109, № 3. P. 747–764.

Klimenko L. S., Maryshev B. S. Effect of solute immobilization on the stability problem within the fractional model in the solute analog of the Horton-Rogers-Lapwood problem // The European Physical Journal E. 2017. Vol. 40. P. 1–7.

Maryshev B. A Non-linear model for solute transport, accounting for sub-diffusive con-centration decline and sorption saturation // Mathematical Modelling of Natural Phenomena. 2016. Vol. 11, № 3. P. 179–190.

Клименко Л.С., Кольцова И.А. Уточнение модели концентрационной конвекции в пористой среде с учетом иммобилизации примеси и слабой закупорки // Вестник Пермского университета. Серия: Физика. 2023. № 4. С. 35–44.

Venezian G. Effect of modulation on the onset of thermal convection // Journal of Fluid Mechanics. 1969. Т. 35, № 2. С. 243–254.

Rosenblat S., Tanaka G. A. Modulation of thermal convection instability // Physics of Fluids. 1971. Т. 14, № 7. С. 1319–1322.

Ahlers G., Hohenberg P. C., Lücke M. Thermal convection under external modulation of the driving force. I. The Lorenz model // Physical Review A. 1985. Т. 32, № 6. С. 3493.

Ahlers G., Hohenberg P. C., Lücke M. Thermal convection under external modulation of the driving force. II. Experiments //Physical review. A, General Physics. 1985. Т. 32, № 6. С. 3519–3534.

Smorodin B. L., Lücke M. Binary-fluid-mixture convection with low-frequency modulated heating, Physical Review E 2010, 82, 016310.

Смородин Б.Л., Тараут А.В. Параметрическая конвекция слабопроводящей жидкости в переменном электрическом поле // Изв. РАН. МЖГ. 2010. № 1. С. 3–11.

Smorodin B. I. Myznikova J. C. Legros, Evolution of convective patterns in a binary-mixture layer subjected to a periodical change of the gravity field, Physics of fluids, 2008, 20, 094102.

Veldsink J. W. et al. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media // Chem. Eng. J. 1995. Vol. 57, № 2. P. 115–126. URL: https://doi.org/10.1016/0923-0467(94)02929-6 (дата обращения: 20.10.2024).

Vandevivere P. Bacterial clogging of porous media: a new modelling approach // Biofouling. 1995. Vol. 8, № 4. P. 281–291. https://doi.org/10.1080/08927019509378281

Zhou S. S. et al. Permeability analysis of hydrate-bearing porous media considering the effect of phase transition and mechanical strain during the shear process // SPE Journal. 2022. Vol. 27, № 1. P. 422–433. URL: https://doi.org/10.2118/206736-PA (дата обращения: 20.10.2024).

Johnson P. R., Elimelech M. Dynamics of colloid deposition in porous media: Blocking based on random sequential adsorption // Langmuir. 1995. Vol. 11, № 3. P. 801–812. URL: https://doi.org/10.1021/la00003a023 (дата обращения: 20.10.2024).

Дерягин Б. В., Чураев Н. В., Муллер В. М. Поверхностные силы. М: Наука, 1985. 398 с.

Nield D.A., Bejan A. Convection in porous media. New York: Springer, 2017. 988p.

Kantorovich L.V., Krylov V.I., Benster C.D., Weiss G. Approximate Methods of Higher Analysis // Phys. Today. 1960. Vol. 13, № 1. P. 74–76. URL: https://doi.org/10.1063/1.3056800 (дата обращения: 20.10.2024).

Nayfeh A. H. Perturbation methods. New Jercey: John Wiley & Sons. 2008. 429 p.

Merson R.H. An operational method for the study of integration processes // Proc. Symp. Data Processing. 1957. Vol. 1. P. 110–125.

Parlett B. N. The QR algorithm // Computing in science & engineering. 2000. Vol. 2, № 1, P. 38–42.

Rotella F., Zambettakis I. Block Householder transformation for parallel QR factorization // Applied mathematics letters. 1999. Vol. 12, № 4. P. 29–34.

Maryshev B.S., Khabin M.R., Evgrafova A.V. Identification of transport parameters for the solute filtration through porous media with clogging // Journal of Porous Media. 2023. Т. 26, № 6. P. 31–53

Demin V.A., Maryshev B.S., Menshikov A.I. Dynamics of an admixture front during the pumping of a nanofluid through a porous medium //Journal of Porous Media. 2021. Т. 24, № 6. P. 53–67.

Published

2024-12-24

How to Cite

Maryshev Б. С., & Klimenko Л. С. (2024). Parametric Excitation of Concentration Convection in a Closed Region of a Porous Medium in the Presence of Solute Particle Immobilisation. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (4 (67), 46–64. https://doi.org/10.17072/1993-0550-2024-4-46-64