The Contact Angle Saturation Influence on a Drop Dynamics in a Non-uniform Alternating Electric Field

Authors

  • Aleksey A. Alabuzhev Perm State University, Institute of Continuous Media Mechanics UB RAS
  • Marina A. Pyankova Institute of Continuous Media Mechanics UB RAS, MIREA – Russian Technological University

DOI:

https://doi.org/10.17072/1993-0550-2024-4-6-20

Keywords:

forced oscillations, contact line motion, electrowetting, dynamic contact angle, contact angle saturation, heterogeneous surface

Abstract

A theoretical model of electrowetting on a dielectric substrate is proposed taking into account the saturation of the dynamic contact angle from the electric voltage in this article. As an example, forced oscillations of an electrolyte droplet placed between two parallel solid surfaces in an alternating electric field are considered. In the state of mechanical equilibrium, the droplet has the shape of a round cylinder whose symmetry axis is perpendicular to the plates. The velocities of the contact lines on both surfaces depend on the external periodic force of the electric field and the deviation of the contact angle from its equilibrium value. To describe the surface inhomogeneity, it is assumed that the proportionality coefficient is a function of coordinates. This function is individual for each surface. It is shown that this leads to the excitation of additional azimuthal modes, in contrast to the case of homogeneous surfaces. The external alternating electric field is also spatially inhomogeneous, since it is difficult to achieve a uniform field in experiments with finite conductor sizes. It is found that the inhomogeneity of the plates changes the value of the saturation angle. Qualitative agreement with experiments was demonstrated.

References

Mugele F., Baret J.-C. Electrowetting: from basics to applications // J. Phys.: Condens. Matter. 2005. Vol. 17(28). P. 705–774. DOI: 10.1088/0953-8984/17/28/R01.

Chen L., Bonaccurso E. Electrowetting - From statics to dynamics // Adv. Colloid Interface Sci. 2014 Vol. 210. P. 2–12. DOI: 10.1016/j.cis.2013.09.007.

Zhao Y.-P., Wang Y. Fundamentals and Applications of Electrowetting: A Critical Review // Rev. Adhesion Adhesives 2013. Vol. 1 P. 114–174. DOI: 10.7569/RAA.2013.097304.

Chung S.K., Rhee K., Cho S.K. Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review // Int. J. Precis. Eng. Manuf. 2010. Vol. 11. P. 991–1006. DOI: 10.1007/s12541-010-0121-1.

Royal M. W., Jokerst N.M., Fair R.B. Droplet-Based Sensing: Optical Microresonator Sensors Embedded in Digital Electrowetting Microfluidics Systems // IEEE Sensors Journal 2013. Vol. 13. P. 4733–4742. DOI: 10.1109/JSEN.2013.2273828.

Nelson W.C., Kim C.-J. Droplet actuation by electrowetting-on-dielectric (EWOD): a review // J. Adhes. Sci. Technol. 2012. Vol. 26. P. 1747–1771. DOI: 10.1163/156856111X599562.

Hua Z., Rouse J.L., Eckhardt A.E., etc. Multiplexed real-time polymerase chain reaction on a digital microfuidic platform // Anal. Chem. 2010. Vol. 82 P. 2310–2316. DOI: 10.1021/ac902510u.

Li J., Kim C.-J. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics // Lab Chip. 2020. Vol. 20. P. 1705–1712. DOI: 10.1039/D0LC00144A.

Li J., Wang Y., Chen H., Wan J. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops // Lab Chip. 2014. Vol. 14 P. 4334–4337. DOI: 10.1039/C4LC00977K.

Lee C.-P., Chen H.-C., Lai M.-F. Electrowetting on dielectric driven droplet resonance and mixing enhancement in parallel-plate configuration // Biomicrofluidics. 2012. Vol. 6(1): 012814. DOI: 10.1063/1.3673258.

Kuiper S., Hendriks B.H.W. Variable-focus liquid lens for miniature cameras // Appl. Phys. Lett. 2004. Vol. 85. P. 1128-1130. DOI: 10.1063/1.1779954.

Li C., Jiang Н. Fabrication and characterization of fexible electrowetting // Micromachines 2014. Vol. 5 P. 432–441. DOI: 10.3390/mi5030432.

Hocking L.M. The damping of capillary-gravity waves at a rigid boundary // J. Fluid Mech. 1987. Vol. 179. P. 253–266. DOI: 10.1017/S0022112087001514.

Алабужев А.А., Кашина М.А. Влияние различия свойств поверхностей на осесимметричные колебания сжатой капли в переменном электрическом поле // Изв. Вузов. Радио-физика. 2018. Т. 61, № 8–9. С. 662 –676. DOI: 10.1007/s11141-019-09919-4.

Алабужев А.А., Кашина М.А. Динамика зажатой капли в неоднородном электрическом поле // Вестник Пермского университета. Физика. 2019. № 4. С. 33–43. DOI: 10.17072/1994-3598-2019-4-33-4.

Kashina М.А., Alabuzhev А.А. The Forced Oscillations of an Oblate Drop Sandwiched Be-tween Different Inhomogeneous Surfaces under AC Vibrational Force // Microgravity Sci. Technol. 2021. Vol. 33: 35. DOI: 10.1007/s12217-021-09886-4.

Alabuzhev A.A. Influence of heterogeneous plates on the axisymmetrical oscillations of a cylindrical drop // Microgravity Sci. Technol. 2018. Vol. 30(1–2). P. 25–32. DOI: 10.1007/s12217-017-9571-8.

Pyankova M.A., Alabuzhev A.A. Influence of the properties of the plate surface on the oscillations of the cramped drop // Phys. Fluids. 2022. Vol. 34: 092015. DOI: 10.1063/5.0101011.

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VIII. Электродинамика сплошных сред. 2-е изд., испр. М.: Наука. Гл. ред. физ.-мат. лит., 1982. 621 с.

Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978. 788 с.

Алабужев А.А., Любимов Д.В. Влияние динамики контактной линии на колебания сжатой капли // ПМТФ. 2012. Т.53, № 1. С. 1-12. DOI: 10.1134/S0021894412010026.

Алабужев А.А., Пьянкова М.А. Динамика зажатой капли в поле трансляционных вибраций // Вычислительная механика сплошных сред. 2023. Т. 16, № 1. С. 78–88. DOI: 10.7242/1999-6691/2023.16.1.6.

Алабужев А.А., Любимов Д.В. Влияние динамики контактной линии на собственные колебания цилиндрической капли// ПМТФ. 2007. Т. 48, № 5. С. 78-86. DOI: 10.1007/s10808-007-0088-6.

Алабужев А.А. Пьянкова М.А. Влияние пространственной неоднородности подложек и электрического поля на динамику зажатой капли // Вестник Пермского университета. Физика. 2022. № 2. С. 56–65. DOI: 10.17072/1994-3598-2022-2-56-65.

Wang Q., Li L., Gu J., etc. Manipulation of a Nonconductive Droplet in an Aqueous Fluid with AC Electric Fields: Droplet Dewetting, Oscillation, and Detachment // Langmuir. 2021. Vol. 37 (41). P. 12098−1221. DOI: 10.1021/acs.langmuir.1c01934.

Published

2024-12-24

How to Cite

Alabuzhev А. А., & Pyankova М. А. (2024). The Contact Angle Saturation Influence on a Drop Dynamics in a Non-uniform Alternating Electric Field. BULLETIN OF PERM UNIVERSITY. MATHEMATICS. MECHANICS. COMPUTER SCIENCE, (4 (67), 6–20. https://doi.org/10.17072/1993-0550-2024-4-6-20